
SESSION 10

 Programming Languages for Objects

 Streams, Readers, and Writers

 Files

 Programming With Files

 Networking

 A Brief Introduction to XML

Streams, Readers, and Writers

WITHOUT THE ABILITY to interact with the rest of the world, a program would be useless.

The interaction of a program with the rest of the world is referred to as input/output or I/O.

Historically, one of the hardest parts of programming language design has been coming up with

good facilities for doing input and output. A computer can be connected to many different types

of input and output devices. If a programming language had to deal with each type of device as a

special case, the complexity would be overwhelming. One of the major achievements in the

history of programming has been to come up with good abstractions for representing I/O devices.

In Java, the main I/O abstractions are called streams. Other I/O abstractions, such as "files" and

"channels" also exist, but in this section we will look only at streams. Every stream represents

either a source of input or a destination to which output can be sent.

11.1.1 Character and Byte Streams

When dealing with input/output, you have to keep in mind that there are two broad categories of

data: machine-formatted data and human-readable text. Machine-formatted data is represented in

binary form, the same way that data is represented inside the computer, that is, as strings of zeros

and ones. Human-readable data is in the form of characters. When you read a number such as

3.141592654, you are reading a sequence of characters and interpreting them as a number.

The same number would be represented in the computer as a bit-string that you would find

unrecognizable.

To deal with the two broad categories of data representation, Java has two broad categories of

streams: byte streams for machine-formatted data and character streams for human-readable data.

There are many predefined classes that represent streams of each type.

http://math.hws.edu/javanotes/c11/s1.html
http://math.hws.edu/javanotes/c11/s2.html
http://math.hws.edu/javanotes/c11/s3.html
http://math.hws.edu/javanotes/c11/s4.html
http://math.hws.edu/javanotes/c11/s5.html

An object that outputs data to a byte stream belongs to one of the subclasses of the abstract class

OutputStream. Objects that read data from a byte stream belong to subclasses of the abstract

class InputStream. If you write numbers to an OutputStream, you won't be able to read the

resulting data yourself. But the data can be read back into the computer with an InputStream. The

writing and reading of the data will be very efficient, since there is no translation involved: the

bits that are used to represent the data inside the computer are simply copied to and from the

streams.

For reading and writing human-readable character data, the main classes are the abstract classes

Reader and Writer. All character stream classes are subclasses of one of these. If a number is to

be written to a Writer stream, the computer must translate it into a human-readable sequence of

characters that represents that number. Reading a number from a Reader stream into a numeric

variable also involves a translation, from a character sequence into the appropriate bit string.

(Even if the data you are working with consists of characters in the first place, such as words

from a text editor, there might still be some translation. Characters are stored in the computer as

16-bit Unicode values. For people who use Western alphabets, character data is generally stored

in files in ASCII code, which uses only 8 bits per character. The Reader and Writer classes take

care of this translation, and can also handle non-western alphabets in countries that use them.)

Byte streams can be useful for direct machine-to-machine communication, and they can

sometimes be useful for storing data in files, especially when large amounts of data need to be

stored efficiently, such as in large databases. However, binary data is fragile in the sense that its

meaning is not self-evident. When faced with a long series of zeros and ones, you have to know

what information it is meant to represent and how that information is encoded before you will be

able to interpret it. Of course, the same is true to some extent for character data, since characters,

like any other kind of data, have to be coded as binary numbers to be stored or processed by a

computer. But the binary encoding of character data has been standardized and is well

understood, and data expressed in character form can be made meaningful to human readers. The

current trend seems to be towards increased use of character data, represented in a way that will

make its meaning as self-evident as possible. We'll look at one way this is done in Section 11.5.

I should note that the original version of Java did not have character streams, and that for ASCII-

encoded character data, byte streams are largely interchangeable with character streams. In fact,

the standard input and output streams, System.in and System.out, are byte streams rather

than character streams. However, you should use Readers and Writers rather than InputStreams

and OutputStreams when working with character data, even when working with the standard

ASCII character set.

The standard stream classes discussed in this section are defined in the package java.io, along

with several supporting classes. You must import the classes from this package if you want to

use them in your program. That means either importing individual classes or putting the directive

"import java.io.*;" at the beginning of your source file. Streams are necessary for

working with files and for doing communication over a network. They can also be used for

communication between two concurrently running threads, and there are stream classes for

reading and writing data stored in the computer's memory.

http://math.hws.edu/javanotes/c11/s5.html

The beauty of the stream abstraction is that it is as easy to write data to a file or to send data over

a network as it is to print information on the screen.

The basic I/O classes Reader, Writer, InputStream, and OutputStream provide only very

primitive I/O operations. For example, the InputStream class declares an abstract instance

method

public int read() throws IOException

for reading one byte of data, as a number in the range 0 to 255, from an input stream. If the end

of the input stream is encountered, the read() method will return the value -1 instead. If some

error occurs during the input attempt, an exception of type IOException is thrown. Since

IOException is a checked exception, this means that you can't use the read() method except

inside a try statement or in a subroutine that is itself declared with a "throws

IOException" clause. (Checked exceptions and mandatory exception handling were covered

in Subsection 8.3.3.)

The InputStream class also defines methods for reading multiple bytes of data in one step into an

array of bytes. However, InputStream provides no convenient methods for reading other types

of data, such as int or double, from a stream. This is not a problem because you'll never use an

object of type InputStream itself. Instead, you'll use subclasses of InputStream that add more

convenient input methods to InputStream's rather primitive capabilities. Similarly, the

OutputStream class defines a primitive output method for writing one byte of data to an output

stream. The method is defined as:

public void write(int b) throws IOException

The parameter is of type int rather than byte, but the parameter value is type-cast to type byte

before it is written; this effectively discards all but the eight low order bits of b. Again, in

practice, you will almost always use higher-level output operations defined in some subclass of

OutputStream.

The Reader and Writer classes provide the analogous low-level read and write methods. As

in the byte stream classes, the parameter of the write(c) method in Writer and the return

value of the read() method in Reader are of type int, but in these character-oriented classes,

the I/O operations read and write characters rather than bytes. The return value of read() is -1

if the end of the input stream has been reached. Otherwise, the return value must be type-cast to

type char to obtain the character that was read. In practice, you will ordinarily use higher level

I/O operations provided by sub-classes of Reader and Writer, as discussed below.

11.1.2 PrintWriter

http://math.hws.edu/javanotes/c8/s3.html#robustness.3.3

One of the neat things about Java's I/O package is that it lets you add capabilities to a stream by

"wrapping" it in another stream object that provides those capabilities. The wrapper object is also

a stream, so you can read from or write to it -- but you can do so using fancier operations than

those available for basic streams.

For example, PrintWriter is a subclass of Writer that provides convenient methods for outputting

human-readable character representations of all of Java's basic data types. If you have an object

belonging to the Writer class, or any of its subclasses, and you would like to use PrintWriter

methods to output data to that Writer, all you have to do is wrap the Writer in a PrintWriter

object. You do this by constructing a new PrintWriter object, using the Writer as input to the

constructor. For example, if charSink is of type Writer, then you could say

PrintWriter printableCharSink = new PrintWriter(charSink);

In fact, the parameter to the constructor can also be an OutputStream or a File, and the

constructor will build a PrintWriter that can write to that output destination. (Files are covered in

the next section.) When you output data to the PrintWriter printableCharSink, using the

high-level output methods in PrintWriter, that data will go to exactly the same place as data

written directly to charSink. You've just provided a better interface to the same output

destination. For example, this allows you to use PrintWriter methods to send data to a file or

over a network connection.

For the record, if out is a variable of type PrintWriter, then the following methods are defined:

 out.print(x) -- prints the value of x, represented in the form of a string of

characters, to the output stream; x can be an expression of any type, including both

primitive types and object types. An object is converted to string form using its

toString() method. A null value is represented by the string "null".

 out.println() -- outputs an end-of-line to the output stream.

 out.println(x) -- outputs the value of x, followed by an end-of-line; this is

equivalent to out.print(x) followed by out.println().

 out.printf(formatString, x1, x2, ...) -- does formatted output of

x1, x2, ... to the output stream. The first parameter is a string that specifies the

format of the output. There can be any number of additional parameters, of any type,

but the types of the parameters must match the formatting directives in the format

string. Formatted output for the standard output stream, System.out, was

introduced in Subsection 2.4.1, and out.printf has the same functionality.

 out.flush() -- ensures that characters that have been written with the above

methods are actually sent to the output destination. In some cases, notably when

writing to a file or to the network, it might be necessary to call this method to force

the output to actually appear at the destination.

Note that none of these methods will ever throw an IOException. Instead, the PrintWriter class

includes the method

public boolean checkError()

http://math.hws.edu/javanotes/c11/s2.html
http://math.hws.edu/javanotes/c2/s4.html#basics.4.1

which will return true if any error has been encountered while writing to the stream. The

PrintWriter class catches any IOExceptions internally, and sets the value of an internal error flag

if one occurs. The checkError() method can be used to check the error flag. This allows you

to use PrintWriter methods without worrying about catching exceptions. On the other hand, to

write a fully robust program, you should call checkError() to test for possible errors

whenever you use a PrintWriter.

11.1.3 Data Streams

When you use a PrintWriter to output data to a stream, the data is converted into the sequence of

characters that represents the data in human-readable form. Suppose you want to output the data

in byte-oriented, machine-formatted form? The java.io package includes a byte-stream class,

DataOutputStream that can be used for writing data values to streams in internal, binary-number

format. DataOutputStream bears the same relationship to OutputStream that PrintWriter bears to

Writer. That is, whereas OutputStream only has methods for outputting bytes, DataOutputStream

has methods writeDouble(double x) for outputting values of type double,

writeInt(int x) for outputting values of type int, and so on. Furthermore, you can wrap

any OutputStream in a DataOutputStream so that you can use the higher level output methods on

it. For example, if byteSink is of type OutputStream, you could say

DataOutputStream dataSink = new DataOutputStream(byteSink);

to wrap byteSink in a DataOutputStream.

For input of machine-readable data, such as that created by writing to a DataOutputStream,

java.io provides the class DataInputStream. You can wrap any InputStream in a

DataInputStream object to provide it with the ability to read data of various types from the byte-

stream. The methods in the DataInputStream for reading binary data are called

readDouble(), readInt(), and so on. Data written by a DataOutputStream is guaranteed

to be in a format that can be read by a DataInputStream. This is true even if the data stream is

created on one type of computer and read on another type of computer. The cross-platform

compatibility of binary data is a major aspect of Java's platform independence.

In some circumstances, you might need to read character data from an InputStream or write

character data to an OutputStream. This is not a problem, since characters, like all data, are

ultimately represented as binary numbers. However, for character data, it is convenient to use

Reader and Writer instead of InputStream and OutputStream. To make this possible, you can

wrap a byte stream in a character stream. If byteSource is a variable of type InputStream and

byteSink is of type OutputStream, then the statements

Reader charSource = new InputStreamReader(byteSource);

Writer charSink = new OutputStreamWriter(byteSink);

create character streams that can be used to read character data from and write character data to

the byte streams. In particular, the standard input stream System.in, which is of type

InputStream for historical reasons, can be wrapped in a Reader to make it easier to read character

data from standard input:

Reader charIn = new InputStreamReader(System.in);

As another application, the input and output streams that are associated with a network

connection are byte streams rather than character streams, but the byte streams can be wrapped in

character streams to make it easy to send and receive character data over the network. We will

encounter network I/O in Section 11.4.

There are various ways for characters to be encoded as binary data. A particular encoding is

known as a charset or character set. Charsets have standardized names such as "UTF-16," "UTF-

8," and "ISO-8859-1." In UTF-16, characters are encoded as 16-bit UNICODE values; this is the

character set that is used internally by Java. UTF-8 is a way of encoding UNICODE characters

using 8 bits for common ASCII characters and longer codes for other characters. ISO-8859-1,

also known as "Latin-1," is an 8-bit encoding that includes ASCII characters as well as certain

accented characters that are used in several European languages. Readers and Writers use the

default charset for the computer on which they are running, unless you specify a different one.

This can be done, for example, in a constructor such as

Writer charSink = new OutputStreamWriter(byteSink, "ISO-8859-

1");

Certainly, the existence of a variety of charset encodings has made text processing more

complicated -- unfortunate for us English-speakers but essential for people who use non-Western

character sets. Ordinarily, you don't have to worry about this, but it's a good idea to be aware that

different charsets exist in case you run into textual data encoded in a non-default way.

11.1.4 Reading Text

Much I/O is done in the form of human-readable characters. In view of this, it is surprising that

Java does not provide a standard character input class that can read character data in a manner

that is reasonably symmetrical with the character output capabilities of PrintWriter. (The

Scanner class, introduced briefly in Subsection 2.4.6 and covered in more detail below, comes

pretty close.) There is one basic case that is easily handled by the standard class BufferedReader,

which has a method

public String readLine() throws IOException

that reads one line of text from its input source. If the end of the stream has been reached, the

return value is null. When a line of text is read, the end-of-line marker is read from the input

stream, but it is not part of the string that is returned. Different input streams use different

characters as end-of-line markers, but the readLine method can deal with all the common

http://math.hws.edu/javanotes/c11/s4.html
http://math.hws.edu/javanotes/c2/s4.html#basics.4.6
http://math.hws.edu/javanotes/c11/s1.html#IO.1.5

cases. (Traditionally, Unix computers, including Linux and Mac OS X, use a line feed character,

'\n', to mark an end of line; classic Macintosh used a carriage return character, '\r'; and

Windows uses the two-character sequence "\r\n". In general, modern computers can deal

correctly with all of these possibilities.)

Line-by-line processing is very common. Any Reader can be wrapped in a BufferedReader to

make it easy to read full lines of text. If reader is of type Reader, then a BufferedReader

wrapper can be created for reader with

BufferedReader in = new BufferedReader(reader);

This can be combined with the InputStreamReader class that was mentioned above to read lines

of text from an InputStream. For example, we can apply this to System.in:

BufferedReader in; // BufferedReader for reading from standard

input.

in = new BufferedReader(new InputStreamReader(System.in));

try {

 String line = in.readLine();

 while (line != null) {

 processOneLineOfInput(line);

 line = in.readLine();

 }

}

catch (IOException e) {

}

This code segment reads and processes lines from standard input until an end-of-stream is

encountered. (An end-of-stream is possible even for interactive input. For example, on at least

some computers, typing a Control-D generates an end-of-stream on the standard input

stream.) The try..catch statement is necessary because the readLine method can throw

an exception of type IOException, which requires mandatory exception handling; an alternative

to try..catch would be to declare that the method that contains the code "throws

IOException". Also, remember that BufferedReader, InputStreamReader, and IOException

must be imported from the package java.io.

Note that the main purpose of BufferedReader is not simply to make it easier to read lines of text.

Some I/O devices work most efficiently if data is read or written in large chunks, instead of as

individual bytes or characters. A BuferedReader reads a chunk of data, and stores it in internal

memory. The internal memory is known as a buffer. When you read from the BufferedReader, it

will take data from the buffer if possible, and it will only go back to its input source for more

data when the buffer is emptied. There is also a BufferedWriter class, and there are buffered

stream classes for byte streams as well.

Previously in this book, we have used the non-standard class TextIO for input both from users

and from files. The advantage of TextIO is that it makes it fairly easy to read data values of any

of the primitive types. Disadvantages include the fact that TextIO can only read from one input

source at a time and that it does not follow the same pattern as Java's built-in input/output

classes.

I have written a class named TextReader to fix some of these disadvantages, while providing

input capabilities similar to those of TextIO. Like TextIO, TextReader is a non-standard class, so

you have to be careful to make it available to any program that uses it. The source code for the

class can be found in the file TextReader.java.

Just as for many of Java's stream classes, an object of type TextReader can be used as a wrapper

for an existing input stream, which becomes the source of the characters that will be read by the

TextReader. (Unlike the standard classes, however, a TextReader is not itself a stream and cannot

be wrapped inside other stream classes.) The constructors

public TextReader(Reader characterSource)

and

public TextReader(InputStream byteSource)

create objects that can be used to read character data from the given Reader or InputStream using

the convenient input methods of the TextReader class. In TextIO, the input methods were static

members of the class. The input methods in the TextReader class are instance methods. The

instance methods in a TextReader object read from the data source that was specified in the

object's constructor. This makes it possible for several TextReader objects to exist at the same

time, reading from different streams; those objects can then be used to read data from several

files or other input sources at the same time.

A TextReader object has essentially the same set of input methods as the TextIO class. One big

difference is how errors are handled. When a TextReader encounters an error in the input, it

throws an exception of type IOException. This follows the standard pattern that is used by Java's

standard input streams. IOExceptions require mandatory exception handling, so TextReader

methods are generally called inside try..catch statements. If an IOException is thrown by

the input stream that is wrapped inside a TextReader, that IOException is simply passed along.

However, other types of errors can also occur. One such possible error is an attempt to read data

from the input stream when there is no more data left in the stream. A TextReader throws an

exception of type TextReader.EndOfStreamException when this happens. The exception class in

this case is a nested class in the TextReader class; it is a subclass of IOException, so a

try..catch statement that handles IOExceptions will also handle end-of-stream exceptions.

However, having a class to represent end-of-stream errors makes it possible to detect such errors

and provide special handling for them. Another type of error occurs when a TextReader tries to

read a data value of a certain type, and the next item in the input stream is not of the correct type.

In this case, the TextReader throws an exception of type TextReader.BadDataException, which

is another subclass of IOException.

For reference, here is a list of some of the more useful instance methods in the TextReader class.

All of these methods can throw exceptions of type IOException:

http://math.hws.edu/javanotes/source/chapter11/TextReader.java

 public char peek() -- looks ahead at the next character in the input stream,

and returns that character. The character is not removed from the stream. If the next

character is an end-of-line, the return value is '\n'. It is legal to call this method

even if there is no more data left in the stream; in that case, the return value is the

constant TextReader.EOF. ("EOF" stands for "End-Of-File," a term that is more

commonly used than "End-Of-Stream", even though not all streams are files.)

 public boolean eoln() and public boolean eof() -- convenience

methods for testing whether the next thing in the file is an end-of-line or an end-of-

file. Note that these methods do not skip whitespace. If eof() is false, you know

that there is still at least one character to be read, but there might not be any more

non-blank characters in the stream.

 public void skipBlanks() and public void skipWhiteSpace() -

- skip past whitespace characters in the input stream; skipWhiteSpace() skips

all whitespace characters, including end-of-line while skipBlanks() only skips

spaces and tabs.

 public String getln() -- reads characters up to the next end-of-line (or

end-of-stream), and returns those characters in a string. The end-of-line marker is

read but is not part of the returned string. This will throw an exception if there are

no more characters in the stream.

 public char getAnyChar() -- reads and returns the next character from the

stream. The character can be a whitespace character such as a blank or end-of-line.

If this method is called after all the characters in the stream have been read, an

exception is thrown.

 public int getInt(), public double getDouble(), public

char getChar(), etc. -- skip any whitespace characters in the stream, including

end-of-lines, then read and return a value of the specified type. Extra characters on

the line are not discarded and are still available to be read by subsequent input

methods. There is a method for each primitive type. An exception occurs if it's not

possible to read a data value of the requested type.

 public int getlnInt(), public double getlnDouble(), public

char getlnChar(), etc. -- skip any whitespace characters in the stream,

including end-of-lines, then read a value of the specified type, which will be the

return value of the method. Any remaining characters on the line are then discarded,

including the end-of-line marker. There is a method for each primitive type. An

exception occurs if it's not possible to read a data value of the requested type.

 public void close() -- Closes the input stream. This should be done when

finished reading from the stream. (TextReader implements the AutoCloseable

interface and so can be used as a "resource" in a try..catch statement, as

discussed at the end of Subsection 8.3.2.)

11.1.5 The Scanner Class

http://math.hws.edu/javanotes/c8/s3.html#robustness.3.2

Since its introduction, Java has been notable for its lack of built-in support for basic input, and

for its reliance on fairly advanced techniques for the support that it does offer. (This is my

opinion, at least.) The Scanner class was introduced to make it easier to read basic data types

from a character input source. It does not (again, in my opinion) solve the problem completely,

but it is a big improvement. (My TextIO and TextReader classes are not complete solutions

either.) The Scanner class is in the package java.util.

Input routines are defined as instance methods in the Scanner class, so to use the class, you need

to create a Scanner object. The constructor specifies the source of the characters that the Scanner

will read. The scanner acts as a wrapper for the input source. The source can be a Reader, an

InputStream, a String, or a File. (If a String is used as the input source, the Scanner will simply

read the characters in the string from beginning to end, in the same way that it would process the

same sequence of characters from a stream. The File class will be covered in the next section.)

For example, you can use a Scanner to read from standard input by saying:

Scanner standardInputScanner = new Scanner(System.in);

and if charSource is of type Reader, you can create a Scanner for reading from

charSource with:

Scanner scanner = new Scanner(charSource);

When processing input, a scanner usually works with tokens. A token is a meaningful string of

characters that cannot, for the purposes at hand, be further broken down into smaller meaningful

pieces. A token can, for example, be an individual word or a string of characters that represents a

value of type double. In the case of a scanner, tokens must be separated by "delimiters." By

default, the delimiters are whitespace characters such as spaces, tabs, and end-of-line markers,

but you can change a Scanner's delimiters if you need to. In normal processing, whitespace

characters serve simply to separate tokens and are discarded by the scanner. A scanner has

instance methods for reading tokens of various types. Suppose that scanner is an object of

type Scanner. Then we have:

 scanner.next() -- reads the next token from the input source and returns it as a

String.

 scanner.nextInt(), scanner.nextDouble(), and so on -- read the next

token from the input source and tries to convert it to a value of type int, double, and

so on. There are methods for reading values of any of the primitive types.

 scanner.nextLine() -- reads an entire line from the input source, up to the

next end-of-line and returns the line as a value of type String. The end-of-line

marker is read but is not part of the return value. Note that this method is not based

on tokens. An entire line is read and returned, including any whitespace characters

in the line.

All of these methods can generate exceptions. If an attempt is made to read past the end of input,

an exception of type NoSuchElementException is thrown. Methods such as

scanner.getInt() will throw an exception of type InputMismatchException if the next

http://math.hws.edu/javanotes/c11/s2.html

token in the input does not represent a value of the requested type. The exceptions that can be

generated do not require mandatory exception handling.

The Scanner class has very nice look-ahead capabilities. You can query a scanner to determine

whether more tokens are available and whether the next token is of a given type. If scanner is

of type Scanner:

 scanner.hasNext() -- returns a boolean value that is true if there is at least one

more token in the input source.

 scanner.hasNextInt(), scanner.hasNextDouble(), and so on --

returns a boolean value that is true if there is at least one more token in the input

source and that token represents a value of the requested type.

 scanner.hasNextLine() -- returns a boolean value that is true if there is at

least one more line in the input source.

Although the insistence on defining tokens only in terms of delimiters limits the usability of

scanners to some extent, they are easy to use and are suitable for many applications. With so

many input classes available -- BufferedReader, TextReader, Scanner -- you might have trouble

deciding which one to use! In general, I would recommend using a Scanner unless you have

some particular reason for preferring the TextIO-style input routines of TextReader.

BufferedReader can be used as a lightweight alternative when all that you want to do is read

entire lines of text from the input source.

11.1.6 Serialized Object I/O

The classes PrintWriter, TextReader, Scanner, DataInputStream, and DataOutputStream allow

you to easily input and output all of Java's primitive data types. But what happens when you

want to read and write objects? Traditionally, you would have to come up with some way of

encoding your object as a sequence of data values belonging to the primitive types, which can

then be output as bytes or characters. This is called serializing the object. On input, you have to

read the serialized data and somehow reconstitute a copy of the original object. For complex

objects, this can all be a major chore. However, you can get Java to do all the work for you by

using the classes ObjectInputStream and ObjectOutputStream. These are subclasses of

InputStream and OutputStream that can be used for writing and reading serialized objects.

ObjectInputStream and ObjectOutputStream are wrapper classes that can be wrapped around

arbitrary InputStreams and OutputStreams. This makes it possible to do object input and output

on any byte stream. The methods for object I/O are readObject(), in ObjectInputStream, and

writeObject(Object obj), in ObjectOutputStream. Both of these methods can throw

IOExceptions. Note that readObject() returns a value of type Object, which generally has to

be type-cast to the actual type of the object that was read.

ObjectOutputStream also has methods writeInt(), writeDouble(), and so on, for

outputting primitive type values to the stream, and ObjectInputStream has corresponding

methods for reading primitive type values. These primitive type values can be interspersed with

objects in the data.

Object streams are byte streams. The objects are represented in binary, machine-readable form.

This is good for efficiency, but it does suffer from the fragility that is often seen in binary data.

They suffer from the additional problem that the binary format of Java objects is very specific to

Java, so the data in object streams is not easily available to programs written in other

programming languages. For these reasons, object streams are appropriate mostly for short-term

storage of objects and for transmitting objects over a network connection from one Java program

to another. For long-term storage and for communication with non-Java programs, other

approaches to object serialization are usually better. (See Section 11.5 for a character-based

approach.)

ObjectInputStream and ObjectOutputStream only work with objects that implement an interface

named Serializable. Furthermore, all of the instance variables in the object must be serializable.

However, there is little work involved in making an object serializable, since the Serializable

interface does not declare any methods. It exists only as a marker for the compiler, to tell it that

the object is meant to be writable and readable. You only need to add the words

"implements Serializable" to your class definitions. Many of Java's standard classes

are already declared to be serializable, including all the GUI component classes and many other

classes in Swing and in the AWT. One of the programming examples in Section 11.3 uses object

IO.

One warning about using ObjectOutputStreams: These streams are optimized to avoid writing

the same object more than once. When an object is encountered for a second time, only a

reference to the first occurrence is written. Unfortunately, if the object has been modified in the

meantime, the new data will not be written. Because of this, ObjectOutputStreams are meant

mainly for use with "immutable" objects that can't be changed after they are created. (Strings are

an example of this.) However, if you do need to write mutable objects to an ObjectOutputStream,

and if it is possible that you will write the same object more than once, you can ensure that the

full, correct version of the object can be written by calling the stream's reset() method before

writing the object to the stream.

Files

THE DATA AND PROGRAMS in a computer's main memory survive only as long as the

power is on. For more permanent storage, computers use files, which are collections of data

stored on a hard disk, on a USB memory stick, on a CD-ROM, or on some other type of storage

device. Files are organized into directories (sometimes called folders). A directory can hold other

directories, as well as files. Both directories and files have names that are used to identify them.

Programs can read data from existing files. They can create new files and can write data to files.

In Java, such input and output can be done using streams. Human-readable character data can be

read from a file using an object belonging to the class FileReader, which is a subclass of Reader.

http://math.hws.edu/javanotes/c11/s5.html
http://math.hws.edu/javanotes/c11/s3.html

Similarly, data can be written to a file in human-readable format through an object of type

FileWriter, a subclass of Writer. For files that store data in machine format, the appropriate I/O

classes are FileInputStream and FileOutputStream. In this section, I will only discuss character-

oriented file I/O using the FileReader and FileWriter classes. However, FileInputStream and

FileOutputStream are used in an exactly parallel fashion. All these classes are defined in the

java.io package.

11.2.1 Reading and Writing Files

The FileReader class has a constructor which takes the name of a file as a parameter and creates

an input stream that can be used for reading from that file. This constructor will throw an

exception of type FileNotFoundException if the file doesn't exist. For example, suppose you

have a file named "data.txt", and you want your program to read data from that file. You

could do the following to create an input stream for the file:

FileReader data; // (Declare the variable before the

 // try statement, or else the variable

 // is local to the try block and you won't

 // be able to use it later in the

program.)

try {

 data = new FileReader("data.txt"); // create the stream

}

catch (FileNotFoundException e) {

 ... // do something to handle the error -- maybe, end the

program

}

The FileNotFoundException class is a subclass of IOException, so it would be acceptable to

catch IOExceptions in the above try...catch statement. More generally, just about any error

that can occur during input/output operations can be caught by a catch clause that handles

IOException.

Once you have successfully created a FileReader, you can start reading data from it. But since

FileReaders have only the primitive input methods inherited from the basic Reader class, you

will probably want to wrap your FileReader in a Scanner, in a TextReader, or in some other

wrapper class. (The TextReader class is not a standard part of Java; it is described in

Subsection 11.1.4. Scanner is discussed in Subsection 11.1.5.) To create a TextReader for

reading from a file named data.dat, you could say:

TextReader data;

try {

 data = new TextReader(new FileReader("data.dat"));

}

catch (FileNotFoundException e) {

http://math.hws.edu/javanotes/c11/s1.html#IO.1.4
http://math.hws.edu/javanotes/c11/s1.html#IO.1.5

 ... // handle the exception

}

To use a Scanner to read from the file, you can construct the scanner in a similar way. However,

it is more common to construct it from an object of type File (to be covered below):

Scanner in;

try {

 in = new Scanner(new File("data.dat"));

}

catch (FileNotFoundException e) {

 ... // handle the exception

}

Once you have a Scanner or TextReader for reading from a file, you can get data from the file

using exactly the same methods that work with any Scanner or TextReader. When you read from

a file using either of these, exceptions can occur. Since the exceptions in this case are not

checked exceptions, you are not forced to enclose your input commands in a try..catch

statement, but it is usually a good idea to do it anyway.

Working with output files is no more difficult than this. You simply create an object belonging to

the class FileWriter. You will probably want to wrap this output stream in an object of type

PrintWriter. For example, suppose you want to write data to a file named "result.dat".

Since the constructor for FileWriter can throw an exception of type IOException, you should use

a try..catch statement:

PrintWriter result;

try {

 result = new PrintWriter(new FileWriter("result.dat"));

}

catch (IOException e) {

 ... // handle the exception

}

However, as with Scanner, it is more common to use a constructor that takes a File as parameter;

this will automatically wrap the File in a FileWriter before creating the PrintWriter:

PrintWriter result;

try {

 result = new PrintWriter(new File("result.dat"));

}

catch (IOException e) {

 ... // handle the exception

}

You can even use just a String as the parameter to the constructor, and it will be interpreted as a

file name (but you should remember that a String in the Scanner constructor does not name a

file; instead the file will read characters from the string itself).

http://math.hws.edu/javanotes/c11/s2.html#IO.2.2

If no file named result.dat exists, a new file will be created. If the file already exists, then

the current contents of the file will be erased and replaced with the data that your program writes

to the file. This will be done without any warning. To avoid overwriting a file that already exists,

you can check whether a file of the same name already exists before trying to create the stream,

as discussed later in this section. An IOException might occur in the PrintWriter constructor if,

for example, you are trying to create a file on a disk that is "write-protected," meaning that it

cannot be modified.

When you are finished with a PrintWriter, you should call its flush() method, such as

"result.flush()", to make sure that all the output has been set to its destination. If you

forget to do this, you might find that some of the data that you have written to a file has not

actually shown up in the file.

After you are finished using a file, it's a good idea to close the file, to tell the operating system

that you are finished using it. You can close a file by calling the close() method of the

associated PrintWriter, TextReader, or Scanner. Once a file has been closed, it is no longer

possible to read data from it or write data to it, unless you open it again as a new stream. (Note

that for most stream classes, the close() method can throw an IOException, which must be

handled; however, PrintWriter, TextReader, and Scanner override this method so that it cannot

throw such exceptions.) If you forget to close a file, the file will ordinarily be closed

automatically when the program terminates or when the file object is garbage collected, but it is

better not to depend on this.

As a complete example, here is a program that will read numbers from a file named data.dat,

and will then write out the same numbers in reverse order to another file named result.dat.

It is assumed that data.dat contains only real numbers. The input file is read using a Scanner.

Exception-handling is used to check for problems along the way. Although the application is not

a particularly useful one, this program demonstrates the basics of working with files. (By the

way, at the end of this program, you'll find our first useful example of a finally clause in a

try statement. When the computer executes a try statement, the commands in its finally

clause is guaranteed to be executed, no matter what. See Subsection 8.3.2.)

import java.io.*;

import java.util.ArrayList;

/**

 * Reads numbers from a file named data.dat and writes them to

a file

 * named result.dat in reverse order. The input file should

contain

 * exactly one real number per line.

 */

public class ReverseFile {

 public static void main(String[] args) {

 TextReader data; // Character input stream for

reading data.

http://math.hws.edu/javanotes/c8/s3.html#robustness.3.2

 PrintWriter result; // Character output stream for

writing data.

 ArrayList<Double> numbers; // An ArrayList for holding

the data.

 numbers = new ArrayList<Double>();

 try { // Create the input stream.

 data = new TextReader(new FileReader("data.dat"));

 }

 catch (FileNotFoundException e) {

 System.out.println("Can't find file data.dat!");

 return; // End the program by returning from

main().

 }

 try { // Create the output stream.

 result = new PrintWriter(new

FileWriter("result.dat"));

 }

 catch (IOException e) {

 System.out.println("Can't open file result.dat!");

 System.out.println("Error: " + e);

 data.close(); // Close the input file.

 return; // End the program.

 }

 try {

 // Read numbers from the input file, adding them to

the ArrayList.

 while (data.eof() == false) { // Read until end-

of-file.

 double inputNumber = data.getlnDouble();

 numbers.add(inputNumber);

 }

 // Output the numbers in reverse order.

 for (int i = numbers.size()-1; i >= 0; i--)

 result.println(numbers.get(i));

 result.flush(); // Make sure data is actually sent

to the file.

 if (result.checkError())

 System.out.println("Some error occurred while

writing the file.");

 else

 System.out.println("Done!");

 }

 catch (IOException e) {

 // Some problem reading the data from the input

file.

 // (Note that PrintWriter doesn't throw exceptions

on output errors.)

 System.out.println("Input Error: " +

e.getMessage());

 }

 finally {

 // Finish by closing the files, whatever else may

have happened.

 data.close();

 result.close();

 }

 } // end of main()

} // end class ReverseFileWithTextReader

A version of this program that uses a Scanner instead of a TextReader can be found in

ReverseFileWithScanner.java. Note that the Scanner version does not need the final

try..catch from the TextReader version, since the Scanner method for reading data doesn't

throw an IOException. Instead, the program will simply stop reading data from the file if it

encounters anything other than a number in the input.

As mentioned at the end of Subsection 8.3.2, the pattern of creating or opening a "resource,"

using it, and then closing the resource is a very common one, and the pattern is supported by the

syntax of the try..catch statement. Files are resources in this sense, as are Scanner,

TextReader, and all of Java's I/O streams. All of these things define close() methods, and it is

good form to close them when you are finished using them. Since they all implement the

AutoCloseable interface, they are all resources in the sense required by try..catch. A

try..catch statement can be used to automatically close a resource when the try statement

ends, which eliminates the need to close it by hand in a finally clause. This assumes that you

will open the resource and use it in the same try..catch.

As an example, the sample program ReverseFileWithResources.java is another version of the

example we have been looking at. In this case, try..catch statements using the resource

pattern are used to read the data from a file and to write the data to a file. My original program

opened a file in one try statement and used it in another try statement. The resource pattern

requires that it all be done in one try, which requires some reorganization of the code (and can

sometimes make it harder to determine the exact cause of an exception). Here is the

try..catch statement from the sample program that opens the input file, reads from it, and

closes it automatically.

try(TextReader data = new TextReader(new

FileReader("data.dat"))) {

 // Read numbers, adding them to the ArrayList.

 while (data.eof() == false) { // Read until end-of-file.

 double inputNumber = data.getlnDouble();

 numbers.add(inputNumber);

 }

http://math.hws.edu/javanotes/source/chapter11/ReverseFileWithScanner.java
http://math.hws.edu/javanotes/c8/s3.html#robustness.3.2
http://math.hws.edu/javanotes/source/chapter11/ReverseFileWithResources.java

}

catch (FileNotFoundException e) {

 // Can only be caused by the TextReader constructor

 System.out.println("Can't open input file data.dat!");

 System.out.println("Error: " + e);

 return; // Return from main(), since an error has

occurred.

 // (Otherwise, the program would try to do the

output!)

}

catch (IOException e) {

 // Can occur when the TextReader tries to read a

number.

 System.out.println("Error while reading from file: " + e);

 return; // Return from main(), since an error has

occurred.

}

The resource, data is constructed on the first line. The syntax requires a declaration of the

resource, with an initial value, in parentheses after the word "try." It's possible to have several

resource declarations, separated by semicolons. They will be closed in the order opposite to the

order in which they are declared.

11.2.2 Files and Directories

The subject of file names is actually more complicated than I've let on so far. To fully specify a

file, you have to give both the name of the file and the name of the directory where that file is

located. A simple file name like "data.dat" or "result.dat" is taken to refer to a file in a directory

that is called the current directory (also known as the "default directory" or "working directory").

The current directory is not a permanent thing. It can be changed by the user or by a program.

Files not in the current directory must be referred to by a path name, which includes both the

name of the file and information about the directory where it can be found.

To complicate matters even further, there are two types of path names, absolute path names and

relative path names. An absolute path name uniquely identifies one file among all the files

available to the computer. It contains full information about which directory the file is in and

what the file's name is. A relative path name tells the computer how to locate the file starting

from the current directory.

Unfortunately, the syntax for file names and path names varies somewhat from one type of

computer to another. Here are some examples:

 data.dat -- on any computer, this would be a file named "data.dat" in the current

directory.

 /home/eck/java/examples/data.dat -- This is an absolute path name in

a UNIX operating system, including Linux and Mac OS X. It refers to a file named

data.dat in a directory named examples, which is in turn in a directory named

java,

 C:\eck\java\examples\data.dat -- An absolute path name on a Windows

computer.

 examples/data.dat -- a relative path name under UNIX. "examples" is the

name of a directory that is contained within the current directory, and data.dat is a

file in that directory. The corresponding relative path name for Windows would be

examples\data.dat.

 ../examples/data.dat -- a relative path name in UNIX that means "go to the

directory that contains the current directory, then go into a directory named

examples inside that directory, and look there for a file named data.data." In general,

".." means "go up one directory." The corresponding path on Windows is

..\examples\data.dat.

When working on the command line, it's safe to say that if you stick to using simple file names

only, and if the files are stored in the same directory with the program that will use them, then

you will be OK. Later in this section, we'll look at a convenient way of letting the user specify a

file in a GUI program, which allows you to avoid the issue of path names altogether.

It is possible for a Java program to find out the absolute path names for two important

directories, the current directory and the user's home directory. You can then use the path name,

for example, in a constructor for a File or a PrintWriter. The names of these directories are

system properties, and they can be read using the function calls:

 System.getProperty("user.dir") -- returns the absolute path name of

the current directory as a String.

 System.getProperty("user.home") -- returns the absolute path name of

the user's home directory as a String.

To avoid some of the problems caused by differences in path names between platforms, Java has

the class java.io.File. An object belonging to this class represents a file. More precisely, an

object of type File represents a file name rather than a file as such. The file to which the name

refers might or might not exist. Directories are treated in the same way as files, so a File object

can represent a directory just as easily as it can represent a file.

A File object has a constructor, "new File(String)", that creates a File object from a path

name. The name can be a simple name, a relative path, or an absolute path. For example,

new File("data.dat") creates a File object that refers to a file named data.dat, in the

current directory. Another constructor, "new File(File,String)", has two parameters.

The first is a File object that refers to a directory. The second can be the name of the file in that

directory or a relative path from that directory to the file.

File objects contain several useful instance methods. Assuming that file is a variable of type

File, here are some of the methods that are available:

 file.exists() -- This boolean-valued function returns true if the file named

by the File object already exists. You can use this method if you want to avoid

overwriting the contents of an existing file when you create a new output stream.

 file.isDirectory() -- This boolean-valued function returns true if the File

object refers to a directory. It returns false if it refers to a regular file or if no file

with the given name exists.

 file.delete() -- Deletes the file, if it exists. Returns a boolean value to

indicate whether the file was successfully deleted.

 file.list() -- If the File object refers to a directory, this function returns an

array of type String[] containing the names of the files in that directory.

Otherwise, it returns null. The method file.listFiles() is similar, except

that it returns an array of File instead of an array of String

Here, for example, is a program that will list the names of all the files in a directory specified by

the user. In this example, I have used a Scanner to read the user's input:

import java.io.File;

import java.util.Scanner;

/**

 * This program lists the files in a directory specified by

 * the user. The user is asked to type in a directory name.

 * If the name entered by the user is not a directory, a

 * message is printed and the program ends.

 */

public class DirectoryList {

 public static void main(String[] args) {

 String directoryName; // Directory name entered by the

user.

 File directory; // File object referring to the

directory.

 String[] files; // Array of file names in the

directory.

 Scanner scanner; // For reading a line of input

from the user.

 scanner = new Scanner(System.in); // scanner reads from

standard input.

 System.out.print("Enter a directory name: ");

 directoryName = scanner.nextLine().trim();

 directory = new File(directoryName);

 if (directory.isDirectory() == false) {

 if (directory.exists() == false)

 System.out.println("There is no such directory!");

 else

 System.out.println("That file is not a

directory.");

 }

 else {

 files = directory.list();

 System.out.println("Files in directory \"" +

directory + "\":");

 for (int i = 0; i < files.length; i++)

 System.out.println(" " + files[i]);

 }

 } // end main()

} // end class DirectoryList

All the classes that are used for reading data from files and writing data to files have constructors

that take a File object as a parameter. For example, if file is a variable of type File, and you

want to read character data from that file, you can create a FileReader to do so by saying

new FileReader(file).

11.2.3 File Dialog Boxes

In many programs, you want the user to be able to select the file that is going to be used for input

or output. If your program lets the user type in the file name, you will just have to assume that

the user understands how to work with files and directories. But in a graphical user interface, the

user expects to be able to select files using a file dialog box, which is a window that a program

can open when it wants the user to select a file for input or output. Swing includes a platform-

independent technique for using file dialog boxes in the form of a class called JFileChooser.

This class is part of the package javax.swing. We looked at using some basic dialog boxes in

Subsection 6.7.2. File dialog boxes are similar to those, but are just a little more complicated to

use.

A file dialog box shows the user a list of files and sub-directories in some directory, and makes it

easy for the user to specify a file in that directory. The user can also navigate easily from one

directory to another. The most common constructor for JFileChooser has no parameter and sets

the starting directory in the dialog box to be the user's home directory. There are also

constructors that specify the starting directory explicitly:

new JFileChooser(File startDirectory)

new JFileChooser(String pathToStartDirectory)

Constructing a JFileChooser object does not make the dialog box appear on the screen. You

have to call a method in the object to do that. There are two different methods that can be used

because there are two types of file dialog: An open file dialog allows the user to specify an

existing file to be opened for reading data into the program; a save file dialog lets the user

specify a file, which might or might not already exist, to be opened for writing data from the

program. File dialogs of these two types are opened using the showOpenDialog and

http://math.hws.edu/javanotes/c6/s7.html#GUI1.8.2

showSaveDialog methods. These methods make the dialog box appear on the screen; the

methods do not return until the user selects a file or cancels the dialog.

A file dialog box always has a parent, another component which is associated with the dialog

box. The parent is specified as a parameter to the showOpenDialog or showSaveDialog

methods. The parent is a GUI component, and can often be specified as "this" in practice,

since file dialogs are often used in instance methods of GUI component classes. (The parameter

can also be null, in which case an invisible component is created to be used as the parent.)

Both showOpenDialog and showSaveDialog have a return value, which will be one of

the constants JFileChooser.CANCEL_OPTION, JFileChooser.ERROR_OPTION, or

JFileChooser.APPROVE_OPTION. If the return value is

JFileChooser.APPROVE_OPTION, then the user has selected a file. If the return value is

something else, then the user did not select a file. The user might have clicked a "Cancel" button,

for example. You should always check the return value, to make sure that the user has, in fact,

selected a file. If that is the case, then you can find out which file was selected by calling the

JFileChooser's getSelectedFile() method, which returns an object of type File that

represents the selected file.

Putting all this together, we can look at a typical subroutine that reads data from a file that is

selected using a JFileChooser:

public void readFile() {

 if (fileDialog == null) // (fileDialog is an instance

variable)

 fileDialog = new JFileChooser();

 fileDialog.setDialogTitle("Select File for Reading");

 fileDialog.setSelectedFile(null); // No file is initially

selected.

 int option = fileDialog.showOpenDialog(this);

 // (Using "this" as a parameter to showOpenDialog()

assumes that the

 // readFile() method is an instance method in a GUI

component class.)

 if (option != JFileChooser.APPROVE_OPTION)

 return; // User canceled or clicked the dialog's close

box.

 File selectedFile = fileDialog.getSelectedFile();

 TextReader in; // (or use some other wrapper class)

 try {

 FileReader stream = new FileReader(selectedFile); // (or

a FileInputStream)

 in = new TextReader(stream);

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to open

the file:\n" + e);

 return;

 }

 try {

 .

 . // Read and process the data from the input stream,

in.

 .

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to read

the data:\n" + e);

 }

 finally {

 in.close();

 }

}

One fine point here is that the variable fileDialog is an instance variable of type

JFileChooser, not a local variable. This allows the file dialog to continue to exist between calls

to readFile(). The main effect of this is that the dialog box will keep the same selected

directory from one call of readFile() to the next. When the dialog reappears, it will show the

same directory that the user selected the previous time it appeared. This is probably what the user

expects.

Note that it's common to do some configuration of a JFileChooser before calling

showOpenDialog or showSaveDialog. For example, the instance method

setDialogTitle(String) is used to specify a title to appear in the title bar of the window.

And setSelectedFile(File) is used to set the file that is selected in the dialog box when

it appears. This can be used to provide a default file choice for the user. In the readFile()

method, above, fileDialog.setSelectedFile(null) specifies that no file is pre-

selected when the dialog box appears. Otherwise, the selected file could be carried over from the

previous time the file dialog was used.

Writing data to a file is similar, but it's a good idea to add a check to determine whether the

output file that is selected by the user already exists. In that case, ask the user whether to replace

the file. Here is a typical subroutine for writing to a user-selected file:

public void writeFile() {

 if (fileDialog == null)

 fileDialog = new JFileChooser(); // (fileDialog is an

instance variable)

 File selectedFile = new File("output.txt"); // (default

output file name)

 fileDialog.setSelectedFile(selectedFile); // Specify a

default file name.

 fileDialog.setDialogTitle("Select File for Writing");

 int option = fileDialog.showSaveDialog(this);

 if (option != JFileChooser.APPROVE_OPTION)

 return; // User canceled or clicked the dialog's close

box.

 selectedFile = fileDialog.getSelectedFile();

 if (selectedFile.exists()) { // Ask the user whether to

replace the file.

 int response = JOptionPane.showConfirmDialog(this,

 "The file \"" + selectedFile.getName()

 + "\" already exists.\nDo you want to replace

it?",

 "Confirm Save",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.WARNING_MESSAGE);

 if (response != JOptionPane.YES_OPTION)

 return; // User does not want to replace the file.

 }

 PrintWriter out; // (or use some other wrapper class)

 try {

 out = new PrintWriter(selectedFile);

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to open

the file:\n" + e);

 return;

 }

 try {

 .

 . // Write data to the output stream, out. (Does not

throw exceptions.)

 .

 out.flush();

 out.close();

 if (out.checkError()) // (need to check for errors in

PrintWriter)

 throw new IOException("Error occurred while trying to

write file.");

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to write

the data:\n" + e);

Programming With Files

IN THIS SECTION, we look at several programming examples that work with files, using the

techniques that were introduced in Section 11.1 and Section 11.2.

11.3.1 Copying a File

As a first example, we look at a simple command-line program that can make a copy of a file.

Copying a file is a pretty common operation, and every operating system already has a command

for doing it. However, it is still instructive to look at a Java program that does the same thing.

Many file operations are similar to copying a file, except that the data from the input file is

processed in some way before it is written to the output file. All such operations can be done by

http://math.hws.edu/javanotes/c11/s1.html
http://math.hws.edu/javanotes/c11/s2.html

programs with the same general form. Subsection 4.3.6 included a program for copying text files

using TextIO. The example in this section will work for any file.

Since the program should be able to copy any file, we can't assume that the data in the file is in

human-readable form. So, we have to use byte streams InputStream and OutputStream to operate

on the file. The program simply copies all the data from the InputStream to the OutputStream,

one byte at a time. If source is the variable that refers to the InputStream, then the function

source.read() can be used to read one byte. This function returns the value -1 when all the

bytes in the input file have been read. Similarly, if copy refers to the OutputStream, then

copy.write(b) writes one byte to the output file. So, the heart of the program is a simple

while loop. As usual, the I/O operations can throw exceptions, so this must be done in a

try..catch statement:

while(true) {

 int data = source.read();

 if (data < 0)

 break;

 copy.write(data);

}

The file-copy command in an operating system such as UNIX uses command line arguments to

specify the names of the files. For example, the user might say "copy original.dat

backup.dat" to copy an existing file, original.dat, to a file named backup.dat.

Command-line arguments can also be used in Java programs. The command line arguments are

stored in the array of strings, args, which is a parameter to the main() routine. The program

can retrieve the command-line arguments from this array. (See Subsection 4.3.6.) For example, if

the program is named CopyFile and if the user runs the program with the command

java CopyFile work.dat oldwork.dat

then in the program, args[0] will be the string "work.dat" and args[1] will be the string

"oldwork.dat". The value of args.length tells the program how many command-line

arguments were specified by the user.

The program CopyFile.java gets the names of the files from the command-line arguments. It

prints an error message and exits if the file names are not specified. To add a little interest, there

are two ways to use the program. The command line can simply specify the two file names. In

that case, if the output file already exists, the program will print an error message and end. This

is to make sure that the user won't accidently overwrite an important file. However, if the

command line has three arguments, then the first argument must be "-f" while the second and

third arguments are file names. The -f is a command-line option, which is meant to modify the

behavior of the program. The program interprets the -f to mean that it's OK to overwrite an

existing program. (The "f" stands for "force," since it forces the file to be copied in spite of what

would otherwise have been considered an error.) You can see in the source code how the

command line arguments are interpreted by the program:

import java.io.*;

http://math.hws.edu/javanotes/c4/s3.html#subroutines.3.4b
http://math.hws.edu/javanotes/c4/s3.html#subroutines.3.4b
http://math.hws.edu/javanotes/source/chapter11/CopyFile.java

/**

 * Makes a copy of a file. The original file and the name of the

 * copy must be given as command-line arguments. In addition, the

 * first command-line argument can be "-f"; if present, the

program

 * will overwrite an existing file; if not, the program will

report

 * an error and end if the output file already exists. The number

 * of bytes that are copied is reported.

 */

public class CopyFile {

 public static void main(String[] args) {

 String sourceName; // Name of the source file,

 // as specified on the command line.

 String copyName; // Name of the copy,

 // as specified on the command line.

 InputStream source; // Stream for reading from the source

file.

 OutputStream copy; // Stream for writing the copy.

 boolean force; // This is set to true if the "-f" option

 // is specified on the command line.

 int byteCount; // Number of bytes copied from the source

file.

 /* Get file names from the command line and check for the

 presence of the -f option. If the command line is not one

 of the two possible legal forms, print an error message

and

 end this program. */

 if (args.length == 3 && args[0].equalsIgnoreCase("-f")) {

 sourceName = args[1];

 copyName = args[2];

 force = true;

 }

 else if (args.length == 2) {

 sourceName = args[0];

 copyName = args[1];

 force = false;

 }

 else {

 System.out.println(

 "Usage: java CopyFile <source-file> <copy-

name>");

 System.out.println(

 " or java CopyFile -f <source-file> <copy-

name>");

 return;

 }

 /* Create the input stream. If an error occurs, end the

program. */

 try {

 source = new FileInputStream(sourceName);

 }

 catch (FileNotFoundException e) {

 System.out.println("Can't find file \"" + sourceName +

"\".");

 return;

 }

 /* If the output file already exists and the -f option was

not

 specified, print an error message and end the program. */

 File file = new File(copyName);

 if (file.exists() && force == false) {

 System.out.println(

 "Output file exists. Use the -f option to replace

it.");

 return;

 }

 /* Create the output stream. If an error occurs, end the

program. */

 try {

 copy = new FileOutputStream(copyName);

 }

 catch (IOException e) {

 System.out.println("Can't open output file \"" + copyName

+ "\".");

 return;

 }

 /* Copy one byte at a time from the input stream to the

output

 stream, ending when the read() method returns -1 (which is

 the signal that the end of the stream has been reached).

If any

 error occurs, print an error message. Also print a

message if

 the file has been copied successfully. */

 byteCount = 0;

 try {

 while (true) {

 int data = source.read();

 if (data < 0)

 break;

 copy.write(data);

 byteCount++;

 }

 source.close();

 copy.close();

 System.out.println("Successfully copied " + byteCount + "

bytes.");

 }

 catch (Exception e) {

 System.out.println("Error occurred while copying. "

 + byteCount + " bytes copied.");

 System.out.println("Error: " + e);

 }

 } // end main()

} // end class CopyFile

It is not terribly efficient to copy one byte at a time. Efficiency could be improved by using

alternative versions of the read() and write() methods that read and write multiple bytes

(see the API for details). Alternatively, the input and output streams could be wrapped in objects

of type BufferedInputStream and BufferedOutputStream which automatically read from and write

data to files in larger blocks, which is more efficient than reading and writing individual bytes.

(There is also a sample program CopyFileAsResources.java that does the same thing as

CopyFile but uses the resource pattern in a try..catch statement to make sure that the

streams are closed in all cases.)

11.3.2 Persistent Data

Once a program ends, any data that was stored in variables and objects in the program is gone. In

many cases, it would be useful to have some of that data stick around so that it will be available

when the program is run again. The problem is, how to make the data persistent between runs of

the program? The answer, of course, is to store the data in a file (or, for some applications, in a

database -- but the data in a database is itself stored in files).

Consider a "phone book" program that allows the user to keep track of a list of names and

associated phone numbers. The program would make no sense at all if the user had to create the

whole list from scratch each time the program is run. It would make more sense to think of the

phone book as a persistent collection of data, and to think of the program as an interface to that

collection of data. The program would allow the user to look up names in the phone book and to

add new entries. Any changes that are made should be preserved after the program ends.

The sample program PhoneDirectoryFileDemo.java is a very simple implementation of this idea.

It is meant only as an example of file use; the phone book that it implements is a "toy" version

that is not meant to be taken seriously. This program stores the phone book data in a file named

".phone_book_demo" in the user's home directory. To find the user's home directory, it uses

the System.getProperty() method that was mentioned in Subsection 11.2.2. When the

program starts, it checks whether the file already exists. If it does, it should contain the user's

phone book, which was saved in a previous run of the program, so the data from the file is read

and entered into a TreeMap named phoneBook that represents the phone book while the

program is running. (See Subsection 10.3.1.) In order to store the phone book in a file, some

decision must be made about how the data in the phone book will be represented. For this

http://math.hws.edu/javanotes/source/chapter11/CopyFileAsResources.java
http://math.hws.edu/javanotes/source/chapter11/PhoneDirectoryFileDemo.java
http://math.hws.edu/javanotes/c11/s2.html#IO.2.2
http://math.hws.edu/javanotes/c10/s3.html#generics.3.1

example, I chose a simple representation in which each line of the file contains one entry

consisting of a name and the associated phone number. A percent sign ('%') separates the name

from the number. The following code at the beginning of the program will read the phone book

data file, if it exists and has the correct format:

File userHomeDirectory = new File(System.getProperty("user.home")

);

File dataFile = new File(userHomeDirectory, ".phone_book_data");

 // A file named .phone_book_data in the user's home

directory.

if (! dataFile.exists()) {

 System.out.println("No phone book data file found. A new one");

 System.out.println("will be created, if you add any entries.");

 System.out.println("File name: " + dataFile.getAbsolutePath());

}

else {

 System.out.println("Reading phone book data...");

 try(Scanner scanner = new Scanner(dataFile)) {

 while (scanner.hasNextLine()) {

 // Read one line from the file, containing one

name/number pair.

 String phoneEntry = scanner.nextLine();

 int separatorPosition = phoneEntry.indexOf('%');

 if (separatorPosition == -1)

 throw new IOException("File is not a phonebook data

file.");

 name = phoneEntry.substring(0, separatorPosition);

 number = phoneEntry.substring(separatorPosition+1);

 phoneBook.put(name,number);

 }

 }

 catch (IOException e) {

 System.out.println("Error in phone book data file.");

 System.out.println("File name: " +

dataFile.getAbsolutePath());

 System.out.println("This program cannot continue.");

 System.exit(1);

 }

}

The program then lets the user do various things with the phone book, including making

modifications. Any changes that are made are made only to the TreeMap that holds the data.

When the program ends, the phone book data is written to the file (if any changes have been

made while the program was running), using the following code:

if (changed) {

 System.out.println("Saving phone directory changes to file " +

 dataFile.getAbsolutePath() + " ...");

 PrintWriter out;

 try {

 out = new PrintWriter(new FileWriter(dataFile));

 }

 catch (IOException e) {

 System.out.println("ERROR: Can't open data file for

output.");

 return;

 }

 for (Map.Entry<String,String> entry : phoneBook.entrySet())

 out.println(entry.getKey() + "%" + entry.getValue());

 out.flush();

 out.close();

 if (out.checkError())

 System.out.println("ERROR: Some error occurred while writing

data file.");

 else

 System.out.println("Done.");

}

The net effect of this is that all the data, including the changes, will be there the next time the

program is run. I've shown you all the file-handling code from the program. If you would like to

see the rest of the program, see the source code file, PhoneDirectoryFileDemo.java.

11.3.3 Files in GUI Programs

The previous examples in this section use a command-line interface, but graphical user interface

programs can also manipulate files. Programs typically have an "Open" command that reads the

data from a file and displays it in a window and a "Save" command that writes the data from the

window into a file. We can illustrate this in Java with a simple text editor program,

TrivialEdit.java. The window for this program uses a JTextArea component to display some text

that the user can edit. It also has a menu bar, with a "File" menu that includes "Open" and "Save"

commands. These commands are implemented using the techniques for reading and writing files

that were covered in Section 11.2.

When the user selects the Open command from the File menu in the TrivialEdit program,

the program pops up a file dialog box where the user specifies the file. It is assumed that the file

is a text file. A limit of 10000 characters is put on the size of the file, since a JTextArea is not

meant for editing large amounts of text. The program reads the text contained in the specified

file, and sets that text to be the content of the JTextArea. The program also sets the title bar of the

window to show the name of the file that was opened. All this is done in the following method,

which is just a variation of the readFile() method presented in Section 11.2:

/**

 * Carry out the Open command by letting the user specify a file to

be opened

 * and reading up to 10000 characters from that file. If the file

is read

 * successfully and is not too long, then the text from the file

replaces the

 * text in the JTextArea.

 */

public void doOpen() {

http://math.hws.edu/javanotes/source/chapter11/PhoneDirectoryFileDemo.java
http://math.hws.edu/javanotes/source/chapter11/TrivialEdit.java
http://math.hws.edu/javanotes/c11/s2.html
http://math.hws.edu/javanotes/c11/s2.html

 if (fileDialog == null)

 fileDialog = new JFileChooser();

 fileDialog.setDialogTitle("Select File to be Opened");

 fileDialog.setSelectedFile(null); // No file is initially

selected.

 int option = fileDialog.showOpenDialog(this);

 if (option != JFileChooser.APPROVE_OPTION)

 return; // User canceled or clicked the dialog's close

box.

 File selectedFile = fileDialog.getSelectedFile();

 Scanner in;

 try {

 in = new Scanner(selectedFile);

 }

 catch (FileNotFoundException e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to open the

file:\n" + e);

 return;

 }

 try {

 StringBuilder input = new StringBuilder();

 while (in.hasNextLine()) {

 String lineFromFile = in.nextLine();

 if (lineFromFile == null)

 break; // End-of-file has been reached.

 input.append(lineFromFile);

 input.append('\n');

 if (input.length() > 10000)

 throw new IOException("Input file is too large for

this program.");

 }

 text.setText(input.toString());

 editFile = selectedFile;

 setTitle("TrivialEdit: " + editFile.getName());

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to read the

data:\n" + e);

 }

 finally {

 in.close();

 }

}

In this program, the instance variable editFile is used to keep track of the file that is

currently being edited, if any, and the setTitle() method from class JFrame is used to set

the title of the window to show the name of the file. (TrivialEdit is defined as a subclass of

JFrame.)

Similarly, the response to the Save command is a minor variation on the writeFile() method

from Section 11.2. I will not repeat it here. If you would like to see the entire program, you will

find the source code in the file TrivialEdit.java.

http://math.hws.edu/javanotes/c11/s2.html
http://math.hws.edu/javanotes/source/chapter11/TrivialEdit.java

11.3.4 Storing Objects in Files

Whenever data is stored in files, some definite format must be adopted for representing the data.

As long as the output routine that writes the data and the input routine that reads the data use the

same format, the files will be usable. However, as usual, correctness is not the end of the story.

The representation that is used for data in files should also be robust. (See Section 8.1.) To see

what this means, we will look at several different ways of representing the same data. This

example builds on the example SimplePaint2.java from Subsection 7.3.3. (You might want to

run it now to remind yourself of what it can do.) In that program, the user could use the mouse to

draw simple sketches. Now, we will add file input/output capabilities to that program. This will

allow the user to save a sketch to a file and later read the sketch back from the file into the

program so that the user can continue to work on the sketch. The basic requirement is that all

relevant data about the sketch must be saved in the file, so that the sketch can be exactly restored

when the file is read by the program.

The new version of the program can be found in the source code file SimplePaintWithFiles.java.

A "File" menu has been added to the new version. It contains two sets of Save/Open commands,

one for saving and reloading sketch data in text form and one for data in binary form. We will

consider both possibilities here, in some detail.

The data for a sketch consists of the background color of the picture and a list of the curves that

were drawn by the user. A curve consists of a list of Points. Point is a standard class in package

java.awt; a Point pt has instance variables pt.x and pt.y of type int that represent the

pixel coordinates of a point on the xy-plane. Each curve can be a different color. Furthermore, a

curve can be "symmetric," which means that in addition to the curve itself, the horizontal and

vertical reflections of the curve are also drawn. The data for each curve is stored in an object of

type CurveData, which is defined in the program as:

/**

 * An object of type CurveData represents the data required to

redraw one

 * of the curves that have been sketched by the user.

 */

private static class CurveData implements Serializable {

 Color color; // The color of the curve.

 boolean symmetric; // Are horizontal and vertical reflections

also drawn?

 ArrayList<Point> points; // The points on the curve.

}

Then, a list of type ArrayList<CurveData> is used to hold data for all of the curves that

the user has drawn. Note that in the new version of the program, the CurveData class has been

declared to "implement Serializable". This allows objects of type CurveData to be

written in binary form to an ObjectOutputStream. See Subsection 11.1.6.

http://math.hws.edu/javanotes/c8/s1.html
http://math.hws.edu/javanotes/source/chapter7/SimplePaint2.java
http://math.hws.edu/javanotes/c7/s3.html#arrays.3.3
http://math.hws.edu/javanotes/source/chapter11/SimplePaintWithFiles.java
http://math.hws.edu/javanotes/c11/s1.html#IO.1.6

Let's think about how the data for a sketch could be saved to an ObjectOuputStream. The sketch

is displayed on the screen in an object of type SimplePaintPanel, which is a subclass of JPanel.

All the data needed for the sketch is stored in instance variables of that object. One possibility

would be to simply write the entire SimplePaintPanel component as a single object to the stream.

This could be done in a method in the SimplePaintPanel class with the statement

outputStream.writeObject(this);

where outputStream is the ObjectOutputStream and "this" refers to the SimplePaintPanel

itself. This statement saves the entire current state of the panel. To read the data back into the

program, you would create an ObjectInputStream for reading the object from the file, and you

would retrieve the object from the file with the statement

SimplePaintPanel newPanel = (SimplePaintPanel)in.readObject();

where in is the ObjectInputStream. Note that the type-cast is necessary because the

method in.readObject() returns a value of type Object. (To get the saved sketch to appear

on the screen, the newPanel must replace the current content pane in the program's window;

furthermore, the menu bar of the window must be replaced, because the menus are associated

with a particular SimplePaintPanel object.)

It might look tempting to be able to save data and restore it with a single command, but in this

case, it's not a good idea. The main problem with doing things this way is that the serialized

form of objects that represent Swing components can change from one version of Java to the

next. This means that data files that contain serialized components such as a SimplePaintPanel

might become unusable in the future, and the data that they contain will be effectively lost. This

is an important consideration for any serious application.

Taking this into consideration, my program uses a different format when it creates a binary file.

The data written to the file consists of (1) the background color of the sketch, (2) the number of

curves in the sketch, and (3) all the CurveData objects that describe the individual curves. The

method that saves the data is similar to the writeFile() method from Subsection 11.2.3.

Here is the complete doSaveAsBinary() method from SimplePaintWithFiles, with

the changes from the generic writeFile() method shown in red:

/**

 * Save the user's sketch to a file in binary form as serialized

 * objects, using an ObjectOutputStream. Files created by this

method

 * can be read back into the program using the doOpenAsBinary()

method.

 */

private void doSaveAsBinary() {

 if (fileDialog == null)

 fileDialog = new JFileChooser();

 File selectedFile; //Initially selected file name in the

dialog.

 if (editFile == null)

 selectedFile = new File("sketchData.binary");

http://math.hws.edu/javanotes/c11/s2.html#IO.2.3

 else

 selectedFile = new File(editFile.getName());

 fileDialog.setSelectedFile(selectedFile);

 fileDialog.setDialogTitle("Select File to be Saved");

 int option = fileDialog.showSaveDialog(this);

 if (option != JFileChooser.APPROVE_OPTION)

 return; // User canceled or clicked the dialog's close box.

 selectedFile = fileDialog.getSelectedFile();

 if (selectedFile.exists()) { // Ask the user whether to replace

the file.

 int response = JOptionPane.showConfirmDialog(this,

 "The file \"" + selectedFile.getName()

 + "\" already exists.\nDo you want to replace it?",

 "Confirm Save",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.WARNING_MESSAGE);

 if (response != JOptionPane.YES_OPTION)

 return; // User does not want to replace the file.

 }

 ObjectOutputStream out;

 try {

 FileOutputStream stream = new FileOutputStream(selectedFile);

 out = new ObjectOutputStream(stream);

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to open the

file:\n" + e);

 return;

 }

 try {

 out.writeObject(getBackground());

 out.writeInt(curves.size());

 for (CurveData curve : curves)

 out.writeObject(curve);

 out.flush();

 out.close();

 editFile = selectedFile;

 setTitle("SimplePaint: " + editFile.getName());

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to write the

file:\n" + e);

 }

}

The heart of this method consists of the following lines, which do the actual writing of the data

to the file:

out.writeObject(getBackground()); // Writes the panel's background

color.

out.writeInt(curves.size()); // Writes the number of curves.

for (CurveData curve : curves) // For each curve...

 out.writeObject(curve); // write the corresponding

CurveData object.

The last line depends on the fact that the CurveData class implements the Serializable interface.

(So does the first; the Color class, like many of Java's standard classes, implements Serializable.)

The doOpenAsBinary() method, which is responsible for reading sketch data back into the

program from an ObjectInputStream, has to read exactly the same data that was written, in the

same order, and use that data to build the data structures that will represent the sketch while the

program is running. Once the data structures have been successfully built, they replace the data

structures that describe the previous contents of the panel. This is done as follows:

/* Read data from the file into local variables */

Color newBackgroundColor = (Color)in.readObject();

int curveCount = in.readInt();

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

for (int i = 0; i < curveCount; i++)

 newCurves.add((CurveData)in.readObject());

in.close();

/* Copy the data that was read into the instance variables that

 describe the sketch that is displayed by the program.*/

curves = newCurves;

setBackground(newBackgroundColor);

repaint();

This is only a little harder than saving the entire SimplePaintPanel component to the file in one

step, and it is more robust since the serialized form of the objects that are saved to file is unlikely

to change in the future. But it still suffers from the general fragility of binary data.

An alternative to using object streams is to save the data in human-readable, character form. The

basic idea is the same: All the data necessary to reconstitute a sketch must be saved to the output

file in some definite format. The method that reads the file must follow exactly the same format

as it reads the data, and it must use the data to rebuild the data structures that represent the sketch

while the program is running.

When writing character data, we can't write out entire objects in one step. All the data has to be

expressed, ultimately, in terms of simple data values such as strings and primitive type values. A

color, for example, can be expressed in terms of three integers giving the red, green, and blue

components of the color. The first (not very good) idea that comes to mind might be to just dump

all the necessary data, in some definite order, into the file. Suppose that out is a PrintWriter that

is used to write to the file. We could then say:

Color bgColor = getBackground(); // Write the background color

to the file.

out.println(bgColor.getRed());

out.println(bgColor.getGreen());

out.println(bgColor.getBlue());

out.println(curves.size()); // Write the number of curves.

for (CurveData curve : curves) { // For each curve, write...

 out.println(curve.color.getRed()); // the color of the

curve

 out.println(curve.color.getGreen());

 out.println(curve.color.getBlue());

 out.println(curve.symmetric ? 0 : 1); // the curve's

symmetry property

 out.println(curve.points.size()); // the number of

points on curve

 for (Point pt : curve.points) { // the coordinates of

each point

 out.println(pt.x);

 out.println(pt.y);

 }

}

This works in the sense that the file-reading method can read the data and rebuild the data

structures. Suppose that the input method uses a Scanner named scanner to read the data file.

Then it could say:

Color newBackgroundColor; // Read the background

Color.

int red = scanner.nextInt();

int green = scanner.nextInt();

int blue = scanner.nextInt();

newBackgroundColor = new Color(red,green,blue);

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

int curveCount = scanner.nextInt(); // The number of curves to

be read.

for (int i = 0; i < curveCount; i++) {

 CurveData curve = new CurveData();

 int r = scanner.nextInt(); // Read the curve's color.

 int g = scanner.nextInt();

 int b = scanner.nextInt();

 curve.color = new Color(r,g,b);

 int symmetryCode = scanner.nextInt(); // Read the curve's

symmetry property.

 curve.symmetric = (symmetryCode == 1);

 curveData.points = new ArrayList<Point>();

 int pointCount = scanner.nextInt(); // The number of points on

this curve.

 for (int j = 0; j < pointCount; j++) {

 int x = scanner.nextInt(); // Read the coordinates of

the point.

 int y = scanner.nextInt();

 curveData.points.add(new Point(x,y));

 }

 newCurves.add(curve);

}

curves = newCurves; // Install the new data

structures.

setBackground(newBackgroundColor);

Note how every piece of data that was written by the output method is read, in the same order, by

the input method. While this does work, the data file is just a long string of numbers. It doesn't

make much more sense to a human reader than a binary-format file would. Furthermore, it is still

fragile in the sense that any small change made to the data representation in the program, such as

adding a new property to curves, will render the data file useless (unless you happen to

remember exactly which version of the program created the file).

So, I decided to use a more complex, more meaningful data format for the text files created by

my program. Instead of just writing numbers, I add words to say what the numbers mean. Here

is a short but complete data file for the program; just by looking at it, you can probably tell what

is going on:

SimplePaintWithFiles 1.0

background 110 110 180

startcurve

 color 255 255 255

 symmetry true

 coords 10 10

 coords 200 250

 coords 300 10

endcurve

startcurve

 color 0 255 255

 symmetry false

 coords 10 400

 coords 590 400

endcurve

The first line of the file identifies the program that created the data file; when the user selects a

file to be opened, the program can check the first word in the file as a simple test to make sure

the file is of the correct type. The first line also contains a version number, 1.0. If the file format

changes in a later version of the program, a higher version number would be used; if the program

sees a version number of 1.2 in a file, but the program only understands version 1.0, the program

can explain to the user that a newer version of the program is needed to read the data file.

The second line of the file specifies the background color of the picture. The three integers

specify the red, green, and blue components of the color. The word "background" at the

beginning of the line makes the meaning clear. The remainder of the file consists of data for the

curves that appear in the picture. The data for each curve is clearly marked with "startcurve" and

"endcurve." The data consists of the color and symmetry properties of the curve and the xy-

coordinates of each point on the curve. Again, the meaning is clear. Files in this format can

easily be created or edited by hand. In fact, the data file shown above was actually created in a

text editor rather than by the program. Furthermore, it's easy to extend the format to allow for

additional options. Future versions of the program could add a "thickness" property to the curves

to make it possible to have curves that are more than one pixel wide. Shapes such as rectangles

and ovals could easily be added.

Outputting data in this format is easy. Suppose that out is a PrintWriter that is being used to

write the sketch data to a file. Then the output can be done with:

out.println("SimplePaintWithFiles 1.0"); // Name and version

number.

Color bgColor = getBackground();

out.println("background " + bgColor.getRed() + " " +

 bgColor.getGreen() + " " + bgColor.getBlue());

for (CurveData curve : curves) {

 out.println();

 out.println("startcurve");

 out.println(" color " + curve.color.getRed() + " " +

 curve.color.getGreen() + " " + curve.color.getBlue());

 out.println(" symmetry " + curve.symmetric);

 for (Point pt : curve.points)

 out.println(" coords " + pt.x + " " + pt.y);

 out.println("endcurve");

}

Reading the data is somewhat harder, since the input routine has to deal with all the extra words

in the data. In my input routine, I decided to allow some variation in the order in which the data

occurs in the file. For example, the background color can be specified at the end of the file,

instead of at the beginning. It can even be left out altogether, in which case white will be used as

the default background color. This is possible because each item of data is labeled with a word

that describes its meaning; the labels can be used to drive the processing of the input. Here is the

complete method from SimplePaintWithFiles.java that reads data files in text format. It uses a

Scanner to read items from the file:

private void doOpenAsText() {

 if (fileDialog == null)

 fileDialog = new JFileChooser();

 fileDialog.setDialogTitle("Select File to be Opened");

 fileDialog.setSelectedFile(null); // No file is initially

selected.

 int option = fileDialog.showOpenDialog(this);

 if (option != JFileChooser.APPROVE_OPTION)

 return; // User canceled or clicked the dialog's close box.

 File selectedFile = fileDialog.getSelectedFile();

 Scanner scanner; // For reading from the data file.

 try {

 Reader stream = new BufferedReader(new

FileReader(selectedFile));

 scanner = new Scanner(stream);

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to open the

file:\n" + e);

http://math.hws.edu/javanotes/source/chapter11/SimplePaintWithFiles.java

 return;

 }

 try { // Read the contents of the file.

 String programName = scanner.next();

 if (! programName.equals("SimplePaintWithFiles"))

 throw new IOException("File is not a SimplePaintWithFiles

data file.");

 double version = scanner.nextDouble();

 if (version > 1.0)

 throw new IOException("File requires newer version of this

program.");

 Color newBackgroundColor = Color.WHITE; // default value

 ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

 while (scanner.hasNext()) {

 String itemName = scanner.next();

 if (itemName.equalsIgnoreCase("background")) {

 int red = scanner.nextInt();

 int green = scanner.nextInt();

 int blue = scanner.nextInt();

 newBackgroundColor = new Color(red,green,blue);

 }

 else if (itemName.equalsIgnoreCase("startcurve")) {

 CurveData curve = new CurveData();

 curve.color = Color.BLACK; // default value

 curve.symmetric = false; // default value

 curve.points = new ArrayList<Point>();

 itemName = scanner.next();

 while (! itemName.equalsIgnoreCase("endcurve")) {

 if (itemName.equalsIgnoreCase("color")) {

 int r = scanner.nextInt();

 int g = scanner.nextInt();

 int b = scanner.nextInt();

 curve.color = new Color(r,g,b);

 }

 else if (itemName.equalsIgnoreCase("symmetry")) {

 curve.symmetric = scanner.nextBoolean();

 }

 else if (itemName.equalsIgnoreCase("coords")) {

 int x = scanner.nextInt();

 int y = scanner.nextInt();

 curve.points.add(new Point(x,y));

 }

 else {

 throw new Exception("Unknown term in input.");

 }

 itemName = scanner.next();

 }

 newCurves.add(curve);

 }

 else {

 throw new Exception("Unknown term in input.");

 }

 }

 scanner.close();

 setBackground(newBackgroundColor); // Install the new

picture data.

 curves = newCurves;

 repaint();

 editFile = selectedFile;

 setTitle("SimplePaint: " + editFile.getName());

 }

 catch (Exception e) {

 JOptionPane.showMessageDialog(this,

 "Sorry, but an error occurred while trying to read the

data:\n" + e);

 }

}

The main reason for this long discussion of file formats has been to get you to think about the

problem of representing complex data in a form suitable for storing the data in a file. The same

problem arises when data must be transmitted over a network. There is no one correct solution to

the problem, but some solutions are certainly better than others. In Section 11.5, we will look at

one solution to the data representation problem that has become increasingly common.

Networking

AS FAR AS A PROGRAM IS CONCERNED, a network is just another possible source of input

data, and another place where data can be output. That does oversimplify things, because

networks are not as easy to work with as files are. But in Java, you can do network

communication using input streams and output streams, just as you can use such streams to

communicate with the user or to work with files. Nevertheless, opening a network connection

between two computers is a bit tricky, since there are two computers involved and they have to

somehow agree to open a connection. And when each computer can send data to the other,

synchronizing communication can be a problem. But the fundamentals are the same as for other

forms of I/O.

One of the standard Java packages is called java.net. This package includes several classes

that can be used for networking. Two different styles of network I/O are supported. One of these,

which is fairly high-level, is based on the World-Wide Web, and provides the sort of network

communication capability that is used by a Web browser when it downloads pages for you to

view. The main classes for this style of networking are java.net.URL and

java.net.URLConnection. An object of type URL is an abstract representation of a

Universal Resource Locator, which is an address for an HTML document or other resource on

the Web. A URLConnection represents a network connection to such a resource.

The second style of I/O, which is more general and more important, views the network at a lower

level. It is based on the idea of a socket. A socket is used by a program to establish a connection

with another program on a network. Communication over a network involves two sockets, one

on each of the computers involved in the communication. Java uses a class called

java.net.Socket to represent sockets that are used for network communication. The term

http://math.hws.edu/javanotes/c11/s5.html

"socket" presumably comes from an image of physically plugging a wire into a computer to

establish a connection to a network, but it is important to understand that a socket, as the term is

used here, is simply an object belonging to the class Socket. In particular, a program can have

several sockets at the same time, each connecting it to another program running on some other

computer on the network -- or even running on the same computer. All these connections use the

same physical network connection.

This section gives a brief introduction to these basic networking classes, and shows how they

relate to input and output streams.

11.4.1 URLs and URLConnections

The URL class is used to represent resources on the World-Wide Web. Every resource has an

address, which identifies it uniquely and contains enough information for a Web browser to find

the resource on the network and retrieve it. The address is called a "url" or "universal resource

locator." (URLs can actually refer to resources from other sources besides the web; after all, they

are "universal".)

An object belonging to the URL class represents such an address. Once you have a URL object,

you can use it to open a URLConnection to the resource at that address. A url is ordinarily

specified as a string, such as "http://math.hws.edu/eck/index.html". There are also

relative url's. A relative url specifies the location of a resource relative to the location of another

url, which is called the base or context for the relative url. For example, if the context is given by

the url http://math.hws.edu/eck/, then the incomplete, relative url "index.html"

would really refer to http://math.hws.edu/eck/index.html.

An object of the class URL is not simply a string, but it can be constructed from a string

representation of a url. A URL object can also be constructed from another URL object,

representing a context, plus a string that specifies a url relative to that context. These

constructors have prototypes

public URL(String urlName) throws MalformedURLException

and

public URL(URL context, String relativeName) throws

MalformedURLException

Note that these constructors will throw an exception of type MalformedURLException if the

specified strings don't represent legal url's. The MalformedURLException class is a subclass of

IOException, and it requires mandatory exception handling.

Once you have a valid URL object, you can call its openConnection() method to set up a

connection. This method returns a URLConnection. The URLConnection object can, in turn, be

used to create an InputStream for reading data from the resource represented by the URL. This is

done by calling its getInputStream() method. For example:

URL url = new URL(urlAddressString);

URLConnection connection = url.openConnection();

InputStream in = connection.getInputStream();

The openConnection() and getInputStream() methods can both throw exceptions of

type IOException. Once the InputStream has been created, you can read from it in the usual way,

including wrapping it in another input stream type, such as BufferedReader, or using a Scanner.

Reading from the stream can, of course, generate exceptions.

One of the other useful instance methods in the URLConnection class is getContentType(),

which returns a String that describes the type of information available from the URL. The return

value can be null if the type of information is not yet known or if it is not possible to determine

the type. The type might not be available until after the input stream has been created, so you

should generally call getContentType() after getInputStream(). The string returned

by getContentType() is in a format called a mime type. Mime types include "text/plain",

"text/html", "image/jpeg", "image/png", and many others. All mime types contain two parts: a

general type, such as "text" or "image", and a more specific type within that general category,

such as "html" or "png". If you are only interested in text data, for example, you can check

whether the string returned by getContentType() starts with "text". (Mime types were first

introduced to describe the content of email messages. The name stands for "Multipurpose

Internet Mail Extensions." They are now used almost universally to specify the type of

information in a file or other resource.)

Let's look at a short example that uses all this to read the data from a URL. This subroutine

opens a connection to a specified URL, checks that the type of data at the URL is text, and then

copies the text onto the screen. Many of the operations in this subroutine can throw exceptions.

They are handled by declaring that the subroutine "throws IOException" and leaving it up

to the main program to decide what to do when an error occurs.

static void readTextFromURL(String urlString) throws IOException

{

 /* Open a connection to the URL, and get an input stream

 for reading data from the URL. */

 URL url = new URL(urlString);

 URLConnection connection = url.openConnection();

 InputStream urlData = connection.getInputStream();

 /* Check that the content is some type of text. Note: If

 getContentType() method were called before getting the

input

 stream, it is possible for contentType to be null only

because

 no connection can be made. The getInputStream() method

will

 throw an error if no connection can be made. */

 String contentType = connection.getContentType();

 System.out.println("Stream opened with content type: " +

contentType);

 System.out.println();

 if (contentType == null || contentType.startsWith("text") ==

false)

 throw new IOException("URL does not seem to refer to a

text file.");

 System.out.println("Fetching context from " + urlString + "

...");

 System.out.println();

 /* Copy lines of text from the input stream to the screen,

until

 end-of-file is encountered (or an error occurs). */

 BufferedReader in; // For reading from the connection's input

stream.

 in = new BufferedReader(new InputStreamReader(urlData));

 while (true) {

 String line = in.readLine();

 if (line == null)

 break;

 System.out.println(line);

 }

 in.close();

} // end readTextFromURL()

A complete program that uses this subroutine can be found in the file FetchURL.java. When you

run the program, you can specify the URL on the command line; if not, you will be prompted to

enter the URL. For this program, a URL can begin with "http://" for a URL that refers to a

resource on the web, with "file://" for a URL that refers to a file on your computer, or with

"ftp://" for a URL that uses the "File Transfer Protocol." If it does not start with any of these,

then "http://" is added to the start of the URL. Try the program with URL

math.hws.edu/javanotes to fetch the front page of this textbook on the web. Try it with

some bad inputs to see the various errors that can occur.

11.4.2 TCP/IP and Client/Server

Communication over the Internet is based on a pair of protocols called the Transmission Control

Protocol and the Internet Protocol, which are collectively referred to as TCP/IP. (In fact, there is

a more basic communication protocol called UDP that can be used instead of TCP in certain

applications. UDP is supported in Java, but for this discussion, I'll stick to TCP/IP, which

provides reliable two-way communication between networked computers.)

http://math.hws.edu/javanotes/source/chapter11/FetchURL.java

For two programs to communicate using TCP/IP, each program must create a socket, as

discussed earlier in this section, and those sockets must be connected. Once such a connection is

made, communication takes place using input streams and output streams. Each program has its

own input stream and its own output stream. Data written by one program to its output stream is

transmitted to the other computer. There, it enters the input stream of the program at the other

end of the network connection. When that program reads data from its input stream, it is

receiving the data that was transmitted to it over the network.

The hard part, then, is making a network connection in the first place. Two sockets are involved.

To get things started, one program must create a socket that will wait passively until a

connection request comes in from another socket. The waiting socket is said to be listening for a

connection. On the other side of the connection-to-be, another program creates a socket that

sends out a connection request to the listening socket. When the listening socket receives the

connection request, it responds, and the connection is established. Once that is done, each

program can obtain an input stream and an output stream for sending data over the connection.

Communication takes place through these streams until one program or the other closes the

connection.

A program that creates a listening socket is sometimes said to be a server, and the socket is

called a server socket. A program that connects to a server is called a client, and the socket that it

uses to make a connection is called a client socket. The idea is that the server is out there

somewhere on the network, waiting for a connection request from some client. The server can be

thought of as offering some kind of service, and the client gets access to that service by

connecting to the server. This is called the client/server model of network communication. In

many actual applications, a server program can provide connections to several clients at the same

time. When a client connects to a server's listening socket, that socket does not stop listening.

Instead, it continues listening for additional client connections at the same time that the first

client is being serviced. To do this, it is necessary to use threads. We'll look at how it works in

the next chapter.

The URL class that was discussed at the beginning of this section uses a client socket behind the

scenes to do any necessary network communication. On the other side of that connection is a

server program that accepts a connection request from the URL object, reads a request from that

object for some particular file on the server computer, and responds by transmitting the contents

of that file over the network back to the URL object. After transmitting the data, the server closes

the connection.

A client program has to have some way to specify which computer, among all those on the

network, it wants to communicate with. Every computer on the Internet has an IP address which

identifies it. Many computers can also be referred to by domain names such as math.hws.edu or

www.whitehouse.gov. (See Section 1.7.) Traditional (or IPv4) IP addresses are 32-bit integers.

They are usually written in the so-called "dotted decimal" form, such as 64.89.144.135,

where each of the four numbers in the address represents an 8-bit integer in the range 0 through

255. A new version of the Internet Protocol, IPv6, is currently being introduced. IPv6 addresses

http://math.hws.edu/javanotes/c12/index.html
http://math.hws.edu/javanotes/c1/s7.html

are 128-bit integers and are usually written in hexadecimal form (with some colons and maybe

some extra information thrown in). In actual use, IPv6 addresses are still fairly rare.

A computer can have several IP addresses, and can have both IPv4 and IPv6 addresses. Usually,

one of these is the loopback address, which can be used when a program wants to communicate

with another program on the same computer. The loopback address has IPv4 address 127.0.0.1

and can also, in general, be referred to using the domain name localhost. In addition, there can be

one or more IP addresses associated with physical network connections. Your computer probably

has some utility for displaying your computer's IP addresses. I have written a small Java

program, ShowMyNetwork.java, that does the same thing. When I run ShowMyNetwork on my

computer, the output is:

 en1 : /192.168.1.47 /fe80:0:0:0:211:24ff:fe9c:5271%5

 lo0 : /127.0.0.1 /fe80:0:0:0:0:0:0:1%1 /0:0:0:0:0:0:0:1%0

The first thing on each line is a network interface name, which is really meaningful only to the

computer's operating system. The same line also contains the IP addresses for that interface. In

this example, lo0 refers to the loopback address, which has IPv4 address 127.0.0.1 as usual. The

most important number here is 192.168.1.47, which is the IPv4 address that can be used for

communication over the network. (The slashes at the start of each address are not part of the

actual address.) The other numbers in the output are IPv6 addresses.

Now, a single computer might have several programs doing network communication at the same

time, or one program communicating with several other computers. To allow for this possibility,

a network connection actually has a port number in combination with an IP address. A port

number is just a 16-bit positive integer. A server does not simply listen for connections -- it

listens for connections on a particular port. A potential client must know both the Internet

address (or domain name) of the computer on which the server is running and the port number on

which the server is listening. A Web server, for example, generally listens for connections on

port 80; other standard Internet services also have standard port numbers. (The standard port

numbers are all less than 1024, and are reserved for particular services. If you create your own

server programs, you should use port numbers greater than 1024.)

11.4.3 Sockets in Java

To implement TCP/IP connections, the java.net package provides two classes, ServerSocket

and Socket. A ServerSocket represents a listening socket that waits for connection requests from

clients. A Socket represents one endpoint of an actual network connection. A Socket can be a

client socket that sends a connection request to a server. But a Socket can also be created by a

server to handle a connection request from a client. This allows the server to create multiple

sockets and handle multiple connections. A ServerSocket does not itself participate in

connections; it just listens for connection requests and creates Sockets to handle the actual

connections.

http://math.hws.edu/javanotes/source/chapter11/ShowMyNetwork.java

When you construct a ServerSocket object, you have to specify the port number on which

the server will listen. The specification for the constructor is

public ServerSocket(int port) throws IOException

The port number must be in the range 0 through 65535, and should generally be greater than

1024. The constructor might throw a SecurityException if a smaller port number is specified. An

IOException can occur if, for example, the specified port number is already in use. (A parameter

value of 0 in this method tells the server socket to listen on any available port.)

As soon as a ServerSocket is created, it starts listening for connection requests. The accept()

method in the ServerSocket class accepts such a request, establishes a connection with the client,

and returns a Socket that can be used for communication with the client. The accept() method

has the form

public Socket accept() throws IOException

When you call the accept() method, it will not return until a connection request is received

(or until some error occurs). The method is said to block while waiting for the connection.

(While the method is blocked, the program -- or more exactly, the thread -- that called the

method can't do anything else. If there are other threads in the same program, they can proceed.)

You can call accept() repeatedly to accept multiple connection requests. The ServerSocket

will continue listening for connections until it is closed, using its close() method, or until

some error occurs, or until the program is terminated in some way.

Suppose that you want a server to listen on port 1728, and that you want it to continue to accept

connections as long as the program is running. Suppose that you've written a method

provideService(Socket) to handle the communication with one client. Then the basic

form of the server program would be:

try {

 ServerSocket server = new ServerSocket(1728);

 while (true) {

 Socket connection = server.accept();

 provideService(connection);

 }

}

catch (IOException e) {

 System.out.println("Server shut down with error: " + e);

}

On the client side, a client socket is created using a constructor in the Socket class. To connect to

a server on a known computer and port, you would use the constructor

public Socket(String computer, int port) throws IOException

The first parameter can be either an IP number or a domain name. This constructor will block

until the connection is established or until an error occurs.

Once you have a connected socket, no matter how it was created, you can use the Socket

methods getInputStream() and getOutputStream() to obtain streams that can be

used for communication over the connection. These methods return objects of type InputStream

and OutputStream, respectively. Keeping all this in mind, here is the outline of a method for

working with a client connection:

/**

 * Open a client connection to a specified server computer and

 * port number on the server, and then do communication through

 * the connection.

 */

void doClientConnection(String computerName, int serverPort) {

 Socket connection;

 InputStream in;

 OutputStream out;

 try {

 connection = new Socket(computerName,serverPort);

 in = connection.getInputStream();

 out = connection.getOutputStream();

 }

 catch (IOException e) {

 System.out.println(

 "Attempt to create connection failed with error: " + e);

 return;

 }

 .

 . // Use the streams, in and out, to communicate with the

server.

 .

 try {

 connection.close();

 // (Alternatively, you might depend on the server

 // to close the connection.)

 }

 catch (IOException e) {

 }

} // end doClientConnection()

All this makes network communication sound easier than it really is. (And if you think it

sounded hard, then it's even harder.) If networks were completely reliable, things would be

almost as easy as I've described. The problem, though, is to write robust programs that can deal

with network and human error. I won't go into detail here. However, what I've covered here

should give you the basic ideas of network programming, and it is enough to write some simple

network applications. Let's look at a few working examples of client/server programming.

11.4.4 A Trivial Client/Server

The first example consists of two programs. The source code files for the programs are

DateClient.java and DateServer.java. One is a simple network client and the other is a matching

server. The client makes a connection to the server, reads one line of text from the server, and

http://math.hws.edu/javanotes/source/chapter11/DateClient.java
http://math.hws.edu/javanotes/source/chapter11/DateServer.java

displays that text on the screen. The text sent by the server consists of the current date and time

on the computer where the server is running. In order to open a connection, the client must know

the computer on which the server is running and the port on which it is listening. The server

listens on port number 32007. The port number could be anything between 1025 and 65535, as

long as the server and the client use the same port. Port numbers between 1 and 1024 are

reserved for standard services and should not be used for other servers. The name or IP number

of the computer on which the server is running can be specified as a command-line argument.

For example, if the server is running on a computer named math.hws.edu, then you could run the

client with the command "java DateClient math.hws.edu". If a computer is not

specified on the command line, then the user is prompted to enter one. Here is the complete

client program:

import java.net.*;

import java.util.Scanner;

import java.io.*;

/**

 * This program opens a connection to a computer specified

 * as the first command-line argument. If no command-line

 * argument is given, it prompts the user for a computer

 * to connect to. The connection is made to

 * the port specified by LISTENING_PORT. The program reads one

 * line of text from the connection and then closes the

 * connection. It displays the text that it read on

 * standard output. This program is meant to be used with

 * the server program, DataServer, which sends the current

 * date and time on the computer where the server is running.

 */

public class DateClient {

 public static final int LISTENING_PORT = 32007;

 public static void main(String[] args) {

 String hostName; // Name of the server computer to

connect to.

 Socket connection; // A socket for communicating with

server.

 BufferedReader incoming; // For reading data from the

connection.

 /* Get computer name from command line. */

 if (args.length > 0)

 hostName = args[0];

 else {

 Scanner stdin = new Scanner(System.in);

 System.out.print("Enter computer name or IP address:

");

 hostName = stdin.nextLine();

 }

 /* Make the connection, then read and display a line of

text. */

 try {

 connection = new Socket(hostName, LISTENING_PORT);

 incoming = new BufferedReader(

 new

InputStreamReader(connection.getInputStream()));

 String lineFromServer = incoming.readLine();

 if (lineFromServer == null) {

 // A null from incoming.readLine() indicates

that

 // end-of-stream was encountered.

 throw new IOException("Connection was opened, " +

 "but server did not send any data.");

 }

 System.out.println();

 System.out.println(lineFromServer);

 System.out.println();

 incoming.close();

 }

 catch (Exception e) {

 System.out.println("Error: " + e);

 }

 } // end main()

} //end class DateClient

Note that all the communication with the server is done in a try..catch statement. This will

catch the IOExceptions that can be generated when the connection is opened or closed and when

data is read from the input stream. The connection's input stream is wrapped in a

BufferedReader, which has a readLine() method that makes it easy to read one line of text.

(See Subsection 11.1.4.)

In order for this program to run without error, the server program must be running on the

computer to which the client tries to connect. By the way, it's possible to run the client and the

server program on the same computer. For example, you can open two command windows, start

the server in one window and then run the client in the other window. To make things like this

easier, most computers will recognize the domain name localhost and the IP number

127.0.0.1 as referring to "this computer." This means that the command "java

DateClient localhost" will tell the DateClient program to connect to a server running on

the same computer. If that command doesn't work, try "java DateClient 127.0.0.1".

The server program that corresponds to the DateClient client program is called DateServer. The

DateServer program creates a ServerSocket to listen for connection requests on port 32007. After

the listening socket is created, the server will enter an infinite loop in which it accepts and

processes connections. This will continue until the program is killed in some way -- for example

by typing a CONTROL-C in the command window where the server is running. When a

connection request is received from a client, the server calls a subroutine to handle the

connection. In the subroutine, any Exception that occurs is caught, so that it will not crash the

server. Just because a connection to one client has failed for some reason, it does not mean that

http://math.hws.edu/javanotes/c11/s1.html#IO.1.4

the server should be shut down; the error might have been the fault of the client. The connection-

handling subroutine creates a PrintWriter for sending data over the connection. It writes the

current date and time to this stream and then closes the connection. (The standard class

java.util.Date is used to obtain the current time. An object of type Date represents a

particular date and time. The default constructor, "new Date()", creates an object that

represents the time when the object is created.) The complete server program is as follows:

import java.net.*;

import java.io.*;

import java.util.Date;

/**

 * This program is a server that takes connection requests on

 * the port specified by the constant LISTENING_PORT. When a

 * connection is opened, the program sends the current time to

 * the connected socket. The program will continue to receive

 * and process connections until it is killed (by a CONTROL-C,

 * for example). Note that this server processes each connection

 * as it is received, rather than creating a separate thread

 * to process the connection.

 */

public class DateServer {

 public static final int LISTENING_PORT = 32007;

 public static void main(String[] args) {

 ServerSocket listener; // Listens for incoming

connections.

 Socket connection; // For communication with the

connecting program.

 /* Accept and process connections forever, or until some

error occurs.

 (Note that errors that occur while communicating with a

connected

 program are caught and handled in the sendDate()

routine, so

 they will not crash the server.) */

 try {

 listener = new ServerSocket(LISTENING_PORT);

 System.out.println("Listening on port " +

LISTENING_PORT);

 while (true) {

 // Accept next connection request and handle

it.

 connection = listener.accept();

 sendDate(connection);

 }

 }

 catch (Exception e) {

 System.out.println("Sorry, the server has shut down.");

 System.out.println("Error: " + e);

 return;

 }

 } // end main()

 /**

 * The parameter, client, is a socket that is already connected

to another

 * program. Get an output stream for the connection, send the

current time,

 * and close the connection.

 */

 private static void sendDate(Socket client) {

 try {

 System.out.println("Connection from " +

 client.getInetAddress().toString());

 Date now = new Date(); // The current date and time.

 PrintWriter outgoing; // Stream for sending data.

 outgoing = new PrintWriter(client.getOutputStream());

 outgoing.println(now.toString());

 outgoing.flush(); // Make sure the data is actually

sent!

 client.close();

 }

 catch (Exception e){

 System.out.println("Error: " + e);

 }

 } // end sendDate()

} //end class DateServer

When you run DateServer in a command-line interface, it will sit and wait for connection

requests and report them as they are received. To make the DateServer service permanently

available on a computer, the program would be run as a daemon. A daemon is a program that

runs continually on a computer, independently of any user. The computer can be configured to

start the daemon automatically as soon as the computer boots up. It then runs in the background,

even while the computer is being used for other purposes. For example, a computer that makes

pages available on the World Wide Web runs a daemon that listens for requests for web pages

and responds by transmitting the pages. It's just a souped-up analog of the DateServer program!

However, the question of how to set up a program as a daemon is not one I want to go into here.

For testing purposes, it's easy enough to start the program by hand, and, in any case, my

examples are not really robust enough or full-featured enough to be run as serious servers. (By

the way, the word "daemon" is just an alternative spelling of "demon" and is usually pronounced

the same way.)

Note that after calling outgoing.println() to send a line of data to the client, the server

program calls outgoing.flush(). The flush() method is available in every output

stream class. Calling it ensures that data that has been written to the stream is actually sent to its

destination. You should generally call this function every time you use an output stream to send

data over a network connection. If you don't do so, it's possible that the stream will collect data

until it has a large batch of data to send. This is done for efficiency, but it can impose

unacceptable delays when the client is waiting for the transmission. It is even possible that some

of the data might remain untransmitted when the socket is closed, so it is especially important to

call flush() before closing the connection. This is one of those unfortunate cases where

different implementations of Java can behave differently. If you fail to flush your output streams,

it is possible that your network application will work on some types of computers but not on

others.

11.4.5 A Simple Network Chat

In the DateServer example, the server transmits information and the client reads it. It's also

possible to have two-way communication between client and server. As a first example, we'll

look at a client and server that allow a user on each end of the connection to send messages to the

other user. The program works in a command-line interface where the users type in their

messages. In this example, the server waits for a connection from a single client and then closes

down its listener so that no other clients can connect. After the client and server are connected,

both ends of the connection work in much the same way. The user on the client end types a

message, and it is transmitted to the server, which displays it to the user on that end. Then the

user of the server types a message that is transmitted to the client. Then the client user types

another message, and so on. This continues until one user or the other enters "quit" when

prompted for a message. When that happens, the connection is closed and both programs

terminate. The client program and the server program are very similar. The techniques for

opening the connections differ, and the client is programmed to send the first message while the

server is programmed to receive the first message. The client and server programs can be found

in the files CLChatClient.java and CLChatServer.java. (The name "CLChat" stands for

"command-line chat.") Here is the source code for the server; the client is similar:

import java.net.*;

import java.util.Scanner;

import java.io.*;

/**

 * This program is one end of a simple command-line interface chat

program.

 * It acts as a server which waits for a connection from the

CLChatClient

 * program. The port on which the server listens can be specified

as a

 * command-line argument. If it is not, then the port specified by

the

 * constant DEFAULT_PORT is used. Note that if a port number of

zero is

 * specified, then the server will listen on any available port.

 * This program only supports one connection. As soon as a

connection is

 * opened, the listening socket is closed down. The two ends of

the connection

 * each send a HANDSHAKE string to the other, so that both ends can

verify

http://math.hws.edu/javanotes/source/chapter11/CLChatClient.java
http://math.hws.edu/javanotes/source/chapter11/CLChatServer.java

 * that the program on the other end is of the right type. Then

the connected

 * programs alternate sending messages to each other. The client

always sends

 * the first message. The user on either end can close the

connection by

 * entering the string "quit" when prompted for a message. Note

that the first

 * character of any string sent over the connection must be 0 or 1;

this

 * character is interpreted as a command.

 */

public class CLChatServer {

 /**

 * Port to listen on, if none is specified on the command line.

 */

 static final int DEFAULT_PORT = 1728;

 /**

 * Handshake string. Each end of the connection sends this

string to the

 * other just after the connection is opened. This is done to

confirm that

 * the program on the other side of the connection is a CLChat

program.

 */

 static final String HANDSHAKE = "CLChat";

 /**

 * This character is prepended to every message that is sent.

 */

 static final char MESSAGE = '0';

 /**

 * This character is sent to the connected program when the

user quits.

 */

 static final char CLOSE = '1';

 public static void main(String[] args) {

 int port; // The port on which the server listens.

 ServerSocket listener; // Listens for a connection

request.

 Socket connection; // For communication with the

client.

 BufferedReader incoming; // Stream for receiving data from

client.

 PrintWriter outgoing; // Stream for sending data to

client.

 String messageOut; // A message to be sent to the

client.

 String messageIn; // A message received from the

client.

 Scanner userInput; // A wrapper for System.in, for

reading

 // lines of input from the user.

 /* First, get the port number from the command line,

 or use the default port if none is specified. */

 if (args.length == 0)

 port = DEFAULT_PORT;

 else {

 try {

 port= Integer.parseInt(args[0]);

 if (port < 0 || port > 65535)

 throw new NumberFormatException();

 }

 catch (NumberFormatException e) {

 System.out.println("Illegal port number, " +

args[0]);

 return;

 }

 }

 /* Wait for a connection request. When it arrives, close

 down the listener. Create streams for communication

 and exchange the handshake. */

 try {

 listener = new ServerSocket(port);

 System.out.println("Listening on port " +

listener.getLocalPort());

 connection = listener.accept();

 listener.close();

 incoming = new BufferedReader(

 new

InputStreamReader(connection.getInputStream()));

 outgoing = new

PrintWriter(connection.getOutputStream());

 outgoing.println(HANDSHAKE); // Send handshake to

client.

 outgoing.flush();

 messageIn = incoming.readLine(); // Receive handshake

from client.

 if (! HANDSHAKE.equals(messageIn)) {

 throw new Exception("Connected program is not a

CLChat!");

 }

 System.out.println("Connected. Waiting for the first

message.");

 }

 catch (Exception e) {

 System.out.println("An error occurred while opening

connection.");

 System.out.println(e.toString());

 return;

 }

 /* Exchange messages with the other end of the connection

until one side

 or the other closes the connection. This server program

waits for

 the first message from the client. After that, messages

alternate

 strictly back and forth. */

 try {

 userInput = new Scanner(System.in);

 System.out.println("NOTE: Enter 'quit' to end the

program.\n");

 while (true) {

 System.out.println("WAITING...");

 messageIn = incoming.readLine();

 if (messageIn.length() > 0) {

 // The first character of the message is a

command. If

 // the command is CLOSE, then the

connection is closed.

 // Otherwise, remove the command character

from the

 // message and proceed.

 if (messageIn.charAt(0) == CLOSE) {

 System.out.println("Connection closed at

other end.");

 connection.close();

 break;

 }

 messageIn = messageIn.substring(1);

 }

 System.out.println("RECEIVED: " + messageIn);

 System.out.print("SEND: ");

 messageOut = userInput.nextLine();

 if (messageOut.equalsIgnoreCase("quit")) {

 // User wants to quit. Inform the other

side

 // of the connection, then close the

connection.

 outgoing.println(CLOSE);

 outgoing.flush(); // Make sure the data is

sent!

 connection.close();

 System.out.println("Connection closed.");

 break;

 }

 outgoing.println(MESSAGE + messageOut);

 outgoing.flush(); // Make sure the data is sent!

 if (outgoing.checkError()) {

 throw new IOException("Error occurred while

transmitting message.");

 }

 }

 }

 catch (Exception e) {

 System.out.println("Sorry, an error has occurred.

Connection lost.");

 System.out.println("Error: " + e);

 System.exit(1);

 }

 } // end main()

} //end class CLChatServer

This program is a little more robust than DateServer. For one thing, it uses a handshake to make

sure that a client who is trying to connect is really a CLChatClient program. A handshake is

simply information sent between a client and a server as part of setting up a connection, before

any actual data is sent. In this case, each side of the connection sends a string to the other side to

identify itself. The handshake is part of the protocol that I made up for communication between

CLChatClient and CLChatServer. A protocol is a detailed specification of what data and

messages can be exchanged over a connection, how they must be represented, and what order

they can be sent in. When you design a client/server application, the design of the protocol is an

important consideration. Another aspect of the CLChat protocol is that after the handshake,

every line of text that is sent over the connection begins with a character that acts as a command.

If the character is 0, the rest of the line is a message from one user to the other. If the character is

1, the line indicates that a user has entered the "quit" command, and the connection is to be shut

down.

Remember that if you want to try out this program on a single computer, you can use two

command-line windows. In one, give the command "java CLChatServer" to start the

server. Then, in the other, use the command "java CLChatClient localhost" to

connect to the server that is running on the same machine. Note that if you run CLChatClient

without specifying a computer on the command line, then you will be asked to type in the name

or IP address of the server computer.

A Brief Introduction to XML

WHEN DATA IS SAVED to a file or transmitted over a network, it must be represented in some

way that will allow the same data to be rebuilt later, when the file is read or the transmission is

received. We have seen that there are good reasons to prefer textual, character-based

representations in many cases, but there are many ways to represent a given collection of data as

text. In this section, we'll take a brief look at one type of character-based data representation that

has become increasingly common.

XML (eXtensible Markup Language) is a syntax for creating data representation languages.

There are two aspects or levels of XML. On the first level, XML specifies a strict but relatively

simple syntax. Any sequence of characters that follows that syntax is a well-formed XML

document. On the second level, XML provides a way of placing further restrictions on what can

appear in a document. This is done by associating a DTD (Document Type Definition) with an

XML document. A DTD is essentially a list of things that are allowed to appear in the XML

document. A well-formed XML document that has an associated DTD and that follows the rules

of the DTD is said to be a valid XML document. The idea is that XML is a general format for

data representation, and a DTD specifies how to use XML to represent a particular kind of data.

(There are also alternatives to DTDs, such as XML schemas, for defining valid XLM documents,

but let's ignore them here.)

There is nothing magical about XML. It's certainly not perfect. It's a very verbose language, and

some people think it's ugly. On the other hand it's very flexible. It can be used to represent

almost any type of data. It was built from the start to support all languages and alphabets. Most

important, it has become an accepted standard. There is support in just about any programming

language for processing XML documents. There are standard DTDs for describing many

different kinds of data. There are many ways to design a data representation language, but XML

is one that has happened to come into widespread use. In fact, it has found its way into almost

every corner of information technology. For example: There are XML languages for representing

mathematical expressions (MathML), musical notation (MusicXML), molecules and chemical

reactions (CML), vector graphics (SVG), and many other kinds of information. XML is used by

OpenOffice and recent versions of Microsoft Office in the document format for office

applications such as word processing, spreadsheets, and presentations. XML site syndication

languages (RSS, ATOM) make it possible for web sites, newspapers, and blogs to make a list of

recent headlines available in a standard format that can be used by other web sites and by web

browsers; the same format is used to publish podcasts. And XML is a common format for the

electronic exchange of business information.

My purpose here is not to tell you everything there is to know about XML. I will just explain a

few ways in which it can be used in your own programs. In particular, I will not say anything

further about DTDs and valid XML. For many purposes, it is sufficient to use well-formed XML

documents with no associated DTDs.

11.5.1 Basic XML Syntax

If you know HTML, the language for writing web pages, then XML will look familiar. An XML

document looks a lot like an HTML document. HTML is not itself an XML language, since it

does not follow all the strict XML syntax rules, but the basic ideas are similar. Here is a short,

well-formed XML document:

<?xml version="1.0"?>

<simplepaint version="1.0">

 <background red='255' green='153' blue='51'/>

 <curve>

 <color red='0' green='0' blue='255'/>

 <symmetric>false</symmetric>

 <point x='83' y='96'/>

 <point x='116' y='149'/>

 <point x='159' y='215'/>

 <point x='216' y='294'/>

 <point x='264' y='359'/>

 <point x='309' y='418'/>

 <point x='371' y='499'/>

 <point x='400' y='543'/>

 </curve>

 <curve>

 <color red='255' green='255' blue='255'/>

 <symmetric>true</symmetric>

 <point x='54' y='305'/>

 <point x='79' y='289'/>

 <point x='128' y='262'/>

 <point x='190' y='236'/>

 <point x='253' y='209'/>

 <point x='341' y='158'/>

 </curve>

</simplepaint>

The first line, which is optional, merely identifies this as an XML document. This line can also

specify other information, such as the character encoding that was used to encode the characters

in the document into binary form. If this document had an associated DTD, it would be specified

in a "DOCTYPE" directive on the next line of the file.

Aside from the first line, the document is made up of elements, attributes, and textual content.

An element starts with a tag, such as <curve> and ends with a matching end-tag such as

</curve>. Between the tag and end-tag is the content of the element, which can consist of text

and nested elements. (In the example, the only textual content is the true or false in the

<symmetric> elements.) If an element has no content, then the opening tag and end-tag can be

combined into a single empty tag, such as <point x='83' y='96'/>, with a "/" before

the final ">". This is an abbreviation for <point x='83' y='96'></point>. A tag can

include attributes such as the x and y in <point x='83' y='96'/> or the version in

<simplepaint version="1.0">. A document can also include a few other things, such

as comments, that I will not discuss here.

The author of a well-formed XML document gets to choose the tag names and attribute names,

and meaningful names can be chosen to descibe the data to a human reader. (For a valid XML

document that uses a DTD, it's the author of the DTD who gets to choose the tag names.)

Every well-formed XML document follows a strict syntax. Here are some of the most important

syntax rules: Tag names and attribute names in XML are case sensitive. A name must begin with

a letter and can contain letters, digits and certain other characters. Spaces and ends-of-line are

significant only in textual content. Every tag must either be an empty tag or have a matching

end-tag. By "matching" here, I mean that elements must be properly nested; if a tag is inside

some element, then the matching end-tag must also be inside that element. A document must

have a root element, which contains all the other elements. The root element in the above

example has tag name simplepaint. Every attribute must have a value, and that value must

be enclosed in quotation marks; either single quotes or double quotes can be used for this. The

special characters < and &, if they appear in attribute values or textual content, must be written as

< and &. "<" and "&" are examples of entities. The entities >, ",

and ' are also defined, representing >, double quote, and single quote. (Additional

entities can be defined in a DTD.)

While this description will not enable you to understand everything that you might encounter in

XML documents, it should allow you to design well-formed XML documents to represent data

structures used in Java programs.

11.5.2 Working With the DOM

The sample XML file shown above was designed to store information about simple drawings

made by the user. The drawings are ones that could be made using the sample program

SimplePaint2.java from Subsection 7.3.3. We'll look at another version of that program that can

save the user's drawing using an XML format for the data file. The new version is

SimplePaintWithXML.java The sample XML document shown earlier in this section was

produced by this program. I designed the format of that document to represent all the data

needed to reconstruct a picture in SimplePaint. The document encodes the background color

of the picture and a list of curves. Each <curve> element contains the data from one object of

type CurveData.

It is easy enough to write data in a customized XML format, although we have to be very careful

to follow all the syntax rules. Here is how I write the data for a SimplePaint picture to a

PrintWriter, out. This produces an XML file with the same structure as the example shown

above:

out.println("<?xml version=\"1.0\"?>");

out.println("<simplepaint version=\"1.0\">");

Color bgColor = getBackground();

out.println(" <background red='" + bgColor.getRed() + "'

green='" +

 bgColor.getGreen() + "' blue='" + bgColor.getBlue() +

"'/>");

for (CurveData c : curves) {

 out.println(" <curve>");

 out.println(" <color red='" + c.color.getRed() + "'

green='" +

 c.color.getGreen() + "' blue='" + c.color.getBlue() +

"'/>");

 out.println(" <symmetric>" + c.symmetric +

"</symmetric>");

 for (Point pt : c.points)

 out.println(" <point x='" + pt.x + "' y='" + pt.y +

"'/>");

 out.println(" </curve>");

}

out.println("</simplepaint>");

http://math.hws.edu/javanotes/source/chapter7/SimplePaint2.java
http://math.hws.edu/javanotes/c7/s3.html#arrays.3.3
http://math.hws.edu/javanotes/source/chapter11/SimplePaintWithXML.java

Reading the data back into the program is another matter. To reconstruct the data structure

represented by the XML Document, it is necessary to parse the document and extract the data

from it. This could be difficult to do by hand. Fortunately, Java has a standard API for parsing

and processing XML Documents. (Actually, it has two, but we will only look at one of them.)

A well-formed XML document has a certain structure, consisting of elements containing

attributes, nested elements, and textual content. It's possible to build a data structure in the

computer's memory that corresponds to the structure and content of the document. Of course,

there are many ways to do this, but there is one common standard representation known as the

Document Object Model, or DOM. The DOM specifies how to build data structures to represent

XML documents, and it specifies some standard methods for accessing the data in that structure.

The data structure is a kind of tree whose structure mirrors the structure of the document. The

tree is constructed from nodes of various types. There are nodes to represent elements, attributes,

and text. (The tree can also contain several other types of node, representing aspects of XML that

we can ignore here.) Attributes and text can be processed without directly manipulating the

corresponding nodes, so we will be concerned almost entirely with element nodes.

(The sample program XMLDemo.java lets you experiment with XML and the DOM. It has a text

area where you can enter an XML document. Initially, the input area contains the sample XML

document from this section. When you click a button named "Parse XML Input", the program

will attempt to read the XML from the input box and build a DOM representation of that

document. If the input is not well-formed XML, an error message is displayed. If it is legal, the

program will traverse the DOM representation and display a list of elements, attributes, and

textual content that it encounters. The program uses a few techniques that I won't discuss here.)

In Java, the DOM representation of an XML document file can be created with just two

statements. If selectedFile is a variable of type File that represents the XML file, then

DocumentBuilder docReader

 =

DocumentBuilderFactory.newInstance().newDocumentBuilder();

xmldoc = docReader.parse(selectedFile);

will open the file, read its contents, and build the DOM representation. The classes

DocumentBuilder and DocumentBuilderFactory are both defined in the package

javax.xml.parsers. The method docReader.parse() does the actual work. It will

throw an exception if it can't read the file or if the file does not contain a legal XML document. If

it succeeds, then the value returned by docReader.parse() is an object that represents the

entire XML document. (This is a very complex task! It has been coded once and for all into a

method that can be used very easily in any Java program. We see the benefit of using a

standardized syntax.)

The structure of the DOM data structure is defined in the package org.w3c.dom, which

contains several data types that represent an XML document as a whole and the individual nodes

in a document. The "org.w3c" in the name refers to the World Wide Web Consortium, W3C,

which is the standards organization for the Web. DOM, like XML, is a general standard, not just

a Java standard. The data types that we need here are Document, Node, Element, and NodeList.

http://math.hws.edu/javanotes/source/chapter11/XMLDemo.java
http://www.w3c.org/

(They are defined as interfaces rather than classes, but that fact is not relevant here.) We

can use methods that are defined in these data types to access the data in the DOM representation

of an XML document.

An object of type Document represents an entire XML document. The return value of

docReader.parse() -- xmldoc in the above example -- is of type Document. We will only

need one method from this class: If xmldoc is of type Document, then

xmldoc.getDocumentElement()

returns a value of type Element that represents the root element of the document. (Recall that this

is the top-level element that contains all the other elements.) In the sample XML document from

earlier in this section, the root element consists of the tag <simplepaint

version="1.0">, the end-tag </simplepaint>, and everything in between. The elements

that are nested inside the root element are represented by their own nodes, which are said to be

children of the root node. An object of type Element contains several useful methods. If

element is of type Element, then we have:

 element.getTagName() -- returns a String containing the name that is used in

the element's tag. For example, the name of a <curve> element is the string

"curve".

 element.getAttribute(attrName) -- if attrName is the name of an

attribute in the element, then this method returns the value of that attribute. For the

element, <point x="83" y="42"/>, element.getAttribute("x")

would return the string "83". Note that the return value is always a String, even if

the attribute is supposed to represent a numerical value. If the element has no

attribute with the specified name, then the return value is an empty string.

 element.getTextContent() -- returns a String containing all the textual

content that is contained in the element. Note that this includes text that is contained

inside other elements that are nested inside the element.

 element.getChildNodes() -- returns a value of type NodeList that contains

all the Nodes that are children of the element. The list includes nodes representing

other elements and textual content that are directly nested in the element (as well as

some other types of node that I don't care about here). The getChildNodes()

method makes it possible to traverse the entire DOM data structure by starting with

the root element, looking at children of the root element, children of the children,

and so on. (There is a similar method that returns the attributes of the element, but I

won't be using it here.)

 element.getElementsByTagName(tagName) -- returns a NodeList that

contains all the nodes representing all elements that are nested inside element and

which have the given tag name. Note that this includes elements that are nested to

any level, not just elements that are directly contained inside element. The

getElementsByTagName() method allows you to reach into the document and

pull out specific data that you are interested in.

An object of type NodeList represents a list of Nodes. Unfortunately, it does not use the API

defined for lists in the Java Collection Framework. Instead, a value, nodeList, of type

NodeList has two methods: nodeList.getLength() returns the number of nodes in the list,

and nodeList.item(i) returns the node at position i, where the positions are numbered 0,

1, ..., nodeList.getLength() - 1. Note that the return value of nodeList.get() is

of type Node, and it might have to be type-cast to a more specific node type before it is used.

Knowing just this much, you can do the most common types of processing of DOM

representations. Let's look at a few code fragments. Suppose that in the course of processing a

document you come across an Element node that represents the element

<background red='255' green='153' blue='51'/>

This element might be encountered either while traversing the document with

getChildNodes() or in the result of a call to

getElementsByTagName("background"). Our goal is to reconstruct the data structure

represented by the document, and this element represents part of that data. In this case, the

element represents a color, and the red, green, and blue components are given by the attributes of

the element. If element is a variable that refers to the node, the color can be obtained by

saying:

int r = Integer.parseInt(element.getAttribute("red"));

int g = Integer.parseInt(element.getAttribute("green"));

int b = Integer.parseInt(element.getAttribute("blue"));

Color bgColor = new Color(r,g,b);

Suppose now that element refers to the node that represents the element

<symmetric>true</symmetric>

In this case, the element represents the value of a boolean variable, and the value is encoded in

the textual content of the element. We can recover the value from the element with:

String bool = element.getTextContent();

boolean symmetric;

if (bool.equals("true"))

 symmetric = true;

else

 symmetric = false;

Next, consider an example that uses a NodeList. Suppose we encounter an element that

represents a list of Points:

<pointlist>

 <point x='17' y='42'/>

 <point x='23' y='8'/>

 <point x='109' y='342'/>

 <point x='18' y='270'/>

</pointlist>

Suppose that element refers to the node that represents the <pointlist> element. Our goal

is to build the list of type ArrayList<Point> that is represented by the element. We can do

this by traversing the NodeList that contains the child nodes of element:

ArrayList<Point> points = new ArrayList<Point>();

NodeList children = element.getChildNodes();

for (int i = 0; i < children.getLength(); i++) {

 Node child = children.item(i); // One of the child nodes

of element.

 if (child instanceof Element) {

 Element pointElement = (Element)child; // One of the

<point> elements.

 int x = Integer.parseInt(pointElement.getAttribute("x")

);

 int y = Integer.parseInt(pointElement.getAttribute("y")

);

 Point pt = new Point(x,y); // Create the Point

represented by pointElement.

 points.add(pt); // Add the point to the list

of points.

 }

}

All the nested <point> elements are children of the <pointlist> element. The if

statement in this code fragment is necessary because an element can have other children in

addition to its nested elements. In this example, we only want to process the children that are

elements.

All these techniques can be employed to write the file input method for the sample program

SimplePaintWithXML.java. When building the data structure represented by an XML file, my

approach is to start with a default data structure and then to modify and add to it as I traverse the

DOM representation of the file. It's not a trivial process, but I hope that you can follow it:

Color newBackground = Color.WHITE;

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

Element rootElement = xmldoc.getDocumentElement();

if (! rootElement.getNodeName().equals("simplepaint"))

 throw new Exception("File is not a SimplePaint file.");

String version = rootElement.getAttribute("version");

try {

 double versionNumber = Double.parseDouble(version);

 if (versionNumber > 1.0)

 throw new Exception("File requires a newer version of

SimplePaint.");

}

catch (NumberFormatException e) {

}

NodeList nodes = rootElement.getChildNodes();

for (int i = 0; i < nodes.getLength(); i++) {

http://math.hws.edu/javanotes/source/chapter11/SimplePaintWithXML.java

 if (nodes.item(i) instanceof Element) {

 Element element = (Element)nodes.item(i);

 if (element.getTagName().equals("background")) { // Read

background color.

 int r = Integer.parseInt(element.getAttribute("red"));

 int g =

Integer.parseInt(element.getAttribute("green"));

 int b =

Integer.parseInt(element.getAttribute("blue"));

 newBackground = new Color(r,g,b);

 }

 else if (element.getTagName().equals("curve")) { // Read

data for a curve.

 CurveData curve = new CurveData();

 curve.color = Color.BLACK;

 curve.points = new ArrayList<Point>();

 newCurves.add(curve); // Add this curve to the new

list of curves.

 NodeList curveNodes = element.getChildNodes();

 for (int j = 0; j < curveNodes.getLength(); j++) {

 if (curveNodes.item(j) instanceof Element) {

 Element curveElement =

(Element)curveNodes.item(j);

 if (curveElement.getTagName().equals("color")) {

 int r =

Integer.parseInt(curveElement.getAttribute("red"));

 int g =

Integer.parseInt(curveElement.getAttribute("green"));

 int b =

Integer.parseInt(curveElement.getAttribute("blue"));

 curve.color = new Color(r,g,b);

 }

 else if

(curveElement.getTagName().equals("point")) {

 int x =

Integer.parseInt(curveElement.getAttribute("x"));

 int y =

Integer.parseInt(curveElement.getAttribute("y"));

 curve.points.add(new Point(x,y));

 }

 else if

(curveElement.getTagName().equals("symmetric")) {

 String content =

curveElement.getTextContent();

 if (content.equals("true"))

 curve.symmetric = true;

 }

 }

 }

 }

 }

}

curves = newCurves; // Change picture in window to show the

data from file.

setBackground(newBackground);

repaint();

You can find the complete source code in SimplePaintWithXML.java.

http://math.hws.edu/javanotes/source/chapter11/SimplePaintWithXML.java

